原点から学ぶ 力学の考え方
文系の学生や理工学の初心者が読んでも容易に理解できる,やさしい力学書。
- 発行年月日
- 2022/01/25
- 判型
- A5
- ページ数
- 120ページ
- ISBN
- 978-4-339-08228-9
- 内容紹介
- まえがき
- 目次
- レビュー
筋の通った分かり易い力学書はないだろうか? このような思いから本書は著されている。本書は,力学書であるにもかかわらず複雑な数式や難解な文章を全く含まず,文系の学生や理工学の初心者が読んでも容易に理解できる平易な内容になっている。そして,力学を構成する数学・原理・法則の発見に至る時代背景・動機・相互関連を詳しく述べ,在来の古典力学を再整理することを試みた。
力学を学ぶ際には,まず万有引力・重力・求心力・慣性力などの雑多な力の表現式や,ニュートン・フック・オイラーなどの偉人により提唱された多数の法則・原理・公式を丸暗記させられ,次に複雑な運動方程式を立てて解かせられる.そのため力学は多くの学生に嫌われている.もっと筋の通った分かり易い力学書はないだろうか?筆者はこのような思いから本書を著している.そして,力学を構成する数学・原理・法則の発見に至る時代背景・動機・相互関連を詳しく述べ,在来の古典力学を再整理することを試みる.
本書は,力学書であるにもかかわらず複雑な数式や難解な文章を全く含まず,文系の学生や理工学の初心者が読んでも容易に理解できる平易な内容になっている.
力学は, 16世紀に力から運動への関係を始点として誕生した.その後19世紀末に,電気・熱・流体・材料・化学などの複合物理領域を貫くエネルギー保存則が確立した.続いて20世紀初頭に対称性の概念が数学から物理学に導入され,ニュートン力学から相対性理論・量子力学を経てゲージ対称性・超ひも理論などの先端宇宙理論に至る全物理学の原点が対称性とエネルギー保存にあることが判明した.
しかし現在も,私達がものづくりに用いる工学は始点からの力学である.これは,力学を単独で使う際にはこの方がはるかに便利であり,通常の製品開発でこれを直ちに変える理由も必要性も全く無いためである.
しかし,時代は動いている.昨今のものづくりでは,力学が単なる力と運動の関係から飛び立ち,機械・電磁気・熱・流体・化学・材料の異分野間を自在に変換し流動するエネルギーを統合的に管理・制御し,併せて製品の機能・構造・寸法・配置・開発期間・コスト・性能を,企画段階でモデルを用いて0から予測し最適化するモデルベース開発に有効なCAEの構築が必須かつ急務である.
モデルベース開発に用いるCAEには大きい問題がある.まず,上記の複合物理領域を統合する理論が存在しない現在,製品モデルをどの理論に頼ってどういう方法で構築するか?である.次に,製品の姿が不明で実験検証が全く不可能な開発初期段階から使用する製品モデルの正当性をどのように検証するか?である.モデルベース開発では,市販のCAEを購入しブラックボックスで使用する,という安易な方法は全く通用しない.
一般に困難な問題の解決方法を探る最適な方法は,原点に返ることである.本書では,力学のみの始点である力から運動への関係から物理学全体の原点である対称性とエネルギー保存則に観点を映し,力学への考え方を見直すことを試みている.
本書の概要は,以下のとおりである.
第1章 対称性とエネルギー ではまず,“対称性”の概念が古代の中国・メソポタミアで数学の中に生まれ,エジプト・ギリシャ・ローマでゆっくりと育成され,ヨーロッパで数多くの偉人により花を咲かせた経緯を述べている.やがて,対称性の概念は20世紀初頭に物理学に導入され,相対性理論・量子力学を経てゲージ対称性・超ひも理論など,実験検証が不可能な先端理論物理学の正当牲を主張する唯一の根拠となるに至る歴史を簡単に説明している.次に,物理学全体を貫くエネルギー保存則について0から分かり易く解説し,その保存則と対称性が深い関係にあることを述べている.
第2章 始点からの力学 では, ルネサンス時代にガリレイ・ニュートン・オイラー等の偉人によって15世紀に誕生し,その後約600年を経た現在もなお通常のものづくり工学を支配する,“力から運動への関係”で構成される古典力学の概要を紹介すると共に,その特徴・有効性・適用範囲を示している.
第3章 力学エネルギー では,力学において運動エネルギーと位置エネルギーの和が保存される,という力学エネルギー保存則について説明している.
第4章 原点からの力学 は本書の中核部分である.20世紀初頭に物理学の原点が対称性とエネルギー保存則にあることが判明した経緯を受け,古典力学の中で唯一力の原因が明らかである弾性体の力学を,対称性とエネルギーの観点から再整理することを試みている.
まず,力学の根幹を力の釣合からエネルギーの均衡に移し,これに基づき質量と弾性の機能を表現し直して,両者が対称で閉じた因果関係を演じていることを示す.次に,従来無関係と思われていたフックの法則(の時間微分)と運動の法則が対称関係にあることを述べる.また,運動エネルギーと位置エネルギーの問に対称性が成立することを立証する.さらに,力の作用反作用の法則と対称性を有する速度の作用反作用の法則を提示し,これがガリレイの相対性原理と同一な別表現であることを述べる.
これらにより,弾性体の力学を構成する事象・エネルギー・法則が相互に整然と関係し合って,古典力学のすっきりと一体化した全体像を構築している姿を紹介する.
補章 粘性 では,物質を構成する原子聞に作用する微視的力学エネルギー(巨視的熱エネルギー)の観点から粘性を論じる.そして,粘性の発生機構,粘性と弾性の共通性と差異,速度比例粘性の発現機構,同一物質が固体・液体・気体の3形態を取る理由,凍結・溶解・結晶化・脆性破壊・蒸発などの物性変化のからくりを簡単に説明する.
力学は,応用物理学の中核に位置し膨大な内容を有している.本書でその全容を記述することは全く不可能であり,それは本書の目的ではない.著者は,力学を専門分野として生きてきた半世紀余の間に得た力学に対する観方・考え方の一端を本書で紹介しようとしているに過ぎない.とは言え,著者の浅学故の独断と偏りが本書の各所に見えることを認めざるを得ない.これに関しては読者の皆様に深くお詫び申し上げる.
東京都立大学の鈴木浩平名誉教授と吉村卓也教授には,半世紀に渡り研究分野における筆者の同輩として丁寧なご指導をいただいた.また,法政大学の御法川学教授には著者の教青と企業の両活動中絶えずご協力いただいた.さらに,キャテック(株)代表取締役天津成美氏と同社取締役西留千晶博士(工学)には,ベンチャー起業以来30年以上の長きに渡り学術を企業活動に実用する方法をご教示・ご指導いただいた.これらの方々に対し心から感謝申し上げます.
2021年11月 長松昭男
1.対称性とエネルギー
1.1 対称性とは
1.2 数学における対称性
1.3 物理学における対称性
1.3.1 物理学と数学の対比
1.3.2 ネーターの定理
1.3.3 力学と対称性
1.4 エネルギー
1.4.1 エネルギーとは
1.4.2 エネルギーの形態
2.始点からの力学
2.1 カとは
2.2 力学の夜明け前
2.3 カ学の誕生
2.3.1 ニュートンの法則
(1)慣性の法則
(2)運動の法則
(3)カの作用反作用の法則
2.3.2 フックの法則
2.3.3 力学特性:始点から
2.3.4 カの釣合と運動方程式
2.4 始点からの力学の特徴
(1)力と運動の力学
(2)対称性の欠落
(3)因果律の欠落
3.カ学エネルギー
3.1 運動エネルギー
3.2 位置エネルギー
3.3 力学エネルギーの保存
3.3.1 エネルギ一保存則
3.3.2 力学エネルギ一保存則
4.原点からの力学
4.1 なぜ今力学の再整理か
4.2 状態量とカ学特性:原点から
4.2.1 状態量
4.2.2 力学特性
(1)在来力学の考え方
(2)弾性体の力学特性
(3)エネルギーに基づく定義
(4)質量と弾性の対比
4.3 弾性体の位置エネルギー
4.4 力学法則の対称性
4.4.1 ニュートンの法則と対称性
(1)弾性の法則(仮称)
(2)力の法則(仮称)
(3)速度の作用反作用の法則(仮称)
4.4.2 フックの法則と対称性
4.4.3 運動量の法則と対称性
4.4.4 釣合則と連続則
4.5 力学の全体像
4.5.1 弾性体の物理事象
4.5.2 法則の対称性
補章 粘性
補1 粘性とは
補1.1 歴史的背景
補1.2 粘性の機能
補2 弾性と粘性
補3 粘性の発生機構
補3.1 原子間ポテンシヤルと粘性
補3.2 力学エネルギーの散逸
補3.3 速度比例粘性の発生理由
補4 固体・液体・気体の物性
参考文献
索引
人名索引