株式会社コロナ社

バイオインフォマティクス シリーズ

  • twitter
  • facebook
  • line

2022.06.09 更新

シリーズ刊行のことば

現在の生命科学においては,シークエンサーや質量分析器に代表される計測機器の急速な進歩により,ゲノム,トランスクリプトーム,エピゲノム,プロテオーム,インタラクトーム,メタボロームなどの多種多様・大規模な分子レベルの「情報」が蓄積しています。これらの情報は生物ビッグデータ(あるいはオミクスデータ)と呼ばれ,このようなデータからいかにして新しい生命科学の発見をしていくかが非常に重要となっています。

このような状況の中でその重要性を増しているのが,生命科学と情報科学を融合した学際分野である「バイオインフォマティクス」(生命情報科学,生物情報科学)です。バイオインフォマティクスは,DNAやタンパク質の配列などの,生物の配列情報をディジタル情報として捉え,コンピュータにより解析を行うことを目的として誕生しました。このような,生物の配列情報を解析するバイオインフォマティクスの一分野は「配列解析」と呼ばれます(これは本シリーズでも主要なテーマとなっています)。上述の計測機器の進歩とともに,バイオインフォマティクスはここ数十年で飛躍的に発展し,いまや配列解析にとどまらずに,トランスクリプトーム解析,メタボローム解析,プロテオーム解析,生物ネットワーク解析など多岐にわたってきています。また,必要な知識も,統計学,機械学習,物理学,化学,数学などの多くの分野にまたがっています。しかしながら,これらのバイオインフォマティクスの多岐にわたる分野を,教科書的・体系的に学ぶことができる成書シリーズは,国内外を見てもほとんどありません。

そこで,大学生,大学院生,技術者,研究者などに,バイオインフォマティクスの各分野を体系的に学習することを可能とするための教科書を提供することを目的として本シリーズを企画しました。これを実現するために,バイオインフォマティクス分野の最前線で活躍をしている,若手・中堅の研究者に執筆を依頼しております。執筆者の方々には,バイオインフォマティクス研究の基盤となる理論やアルゴリズムを中心に,可能な限り厳密かつ自己完結的に解説を行うようにお願いしています。そのため,本シリーズは,大学などにおけるバイオインフォマティクスの講義の教科書として活用可能であるのみならず,読者が独学する場合にも最適な書籍になっていると確信しています。

最後になりますが,本シリーズの企画の段階から辛抱強くサポートしてくださったコロナ社の皆様に御礼を申し上げます。本シリーズが,今後のバイオインフォマティクス研究さらには生命科学研究の一助となることを切に願います。

2021年9月 「バイオインフォマティクスシリーズ」監修者 浜田道昭

シリーズラインナップ

監修 浜田道昭

バイオインフォマティクスseries1

バイオインフォマティクスのための生命科学(7月上旬発行予定)

バイオインフォマティクスを行うために必要な生命科学の基礎について数式を用いずに解説

Coming soon
バイオインフォマティクスシリーズ1 バイオインフォマティクスのための生命科学
  • 浜田 道昭 監修/ 福永 津嵩,岩切 淳一 共著
  • A5サイズ/206頁
  • 定価3,410円(本体3,100円+税)
書籍の特徴
  • 数理情報学分野の学生・技術者・研究者がバイオインフォマティクスを学ぶために必要な生命科学の基礎について,またそれら生命科学にバイオインフォマティクスが果たしている役割について解説しました。本シリーズのほかの巻を読む前に本書を一読すると,ほかの巻が扱っている生命科学的な内容について理解が深まります。
  • 生命科学になじみのない読者でもなるべく読みやすく,必要事項を理解できるよう,生命科学データ解析において特に頻出する事項に絞って解説しました。

【各章について】

  1. 1章:生命現象を分子的な観点から捉える分子生物学のセントラルドグマについて解説。特に,近年急速に進歩した技術である塩基配列決定技術を中心に,塩基配列ビッグデータがセントラルドグマの過程の解明に果たす役割を紹介しています。
  2. 2章:第1章で登場する生体分子が,実際に物理的にどのような構造をとるのか,そしてその構造がどのように生体的な機能と関係するのかについて,生物物理学的な観点を解説しています。
  3. 3章:遺伝子配列決定技術の急速な進歩を受けて,分野が変容しつつある進化遺伝学と微生物学について,その基礎とバイオインフォマティクスの果たす役割について解説しています。
目次 ☆発行前情報のため,一部変更となる場合がございます
1. 分子生物学のセントラルドグマとオミクスデータ
1.1 セントラルドグマの基礎
 1.1.1 DNAと複製
 1.1.2 RNAと転写
 1.1.3 タンパク質と翻訳
 1.1.4 セントラルドグマ
1.2 オミクスデータの測定技術
 1.2.1 DNA操作の一般的実験手法
 1.2.2 サンガー法
 1.2.3 第二世代塩基配列決定法
 1.2.4 第三世代塩基配列決定法
 1.2.5 RNAの配列決定と発現量推定
 1.2.6 質量分析法
1.3 ゲノムと遺伝子
 1.3.1 生体分子としてのゲノム
 1.3.2 配列データとしてのゲノム
 1.3.3 ゲノム配列の多様性と参照ゲノム配列
 1.3.4 遺伝子とアノテーション
 1.3.5 ゲノムサイズと遺伝子数
 1.3.6 ゲノム配列決定
 1.3.7 ゲノム編集
1.4 エピゲノムと転写制御
 1.4.1 転写因子
 1.4.2 クロマチン構造
 1.4.3 ヒストン修飾とヒストンバリアント
 1.4.4 DNAメチル化
 1.4.5 ゲノムインプリンティングとX染色体不活化
1.5 トランスクリプトームと転写後発現制御
 1.5.1 転写産物の種類
 1.5.2 選択的スプライシング
 1.5.3 新規転写産物の発見
 1.5.4 RNAの発現制御
 1.5.5 RNA修飾とエピトランスクリプトーム
1.6 プロテオームとタンパク質機能
 1.6.1 タンパク質の折り畳みと機能
 1.6.2 細胞内局在
 1.6.3 翻訳後修飾
 1.6.4 タンパク質の分類
1.7 データベースとオミクスデータ解析
 1.7.1 生命科学におけるデータベース
 1.7.2 ゲノムブラウザ—複数オミクスデータの可視化—
 1.7.3 生物学的ネットワーク解析
 1.7.4 遺伝子オントロジー解析

2. 生体分子の高次構造と分子間相互作用
2.1 生体分子の立体構造決定法と構造データ
2.2 生体分子に働く力・化学結合
 2.2.1 静電相互作用
 2.2.2 水素結合
 2.2.3 疎水性相互作用
 2.2.4 スタッキング相互作用
 2.2.5 ファンデルワールス力
2.3 生体分子の高次構造
 2.3.1 DNAの構造
 2.3.2 RNAの構造
 2.3.3 タンパク質の構造
2.4 分子間相互作用
 2.4.1 相互作用の特異性
 2.4.2 DNA–タンパク質相互作用
 2.4.3 RNA–タンパク質相互作用
 2.4.4 RNA–RNA相互作用
 2.4.5 タンパク質–タンパク質相互作用
 2.4.6 化合物–タンパク質相互作用

3. 進化遺伝学・微生物学のためのバイオインフォマティクス
3.1 進化遺伝学のバイオインフォマティクス
 3.1.1 進化遺伝学の基礎理論
 3.1.2 進化遺伝学研究におけるバイオインフォマティクスの重要性
 3.1.3 ゲノムに起こる小規模な変異
 3.1.4 ゲノムに生じる大規模な変異
 3.1.5 系統関係の表現法と系統分類学
3.2 微生物学のバイオインフォマティクス
 3.2.1 微生物学研究の重要性
 3.2.2 微生物学研究におけるゲノム情報解析の重要性
 3.2.3 微生物の系統分類
 3.2.4 微生物の構造的・生理的特徴
 3.2.5 ウイルス
 3.2.6 原核生物ゲノムの特徴とゲノムアノテーション
 3.2.7 微生物の比較ゲノム解析
 3.2.8 微生物比較ゲノム解析の研究例—プロテオロドプシン保有微生物の生存戦略—
 3.2.9 メタゲノム解析

付録
引用・参考文献
索引
more
著者からのメッセージ
生命科学を専門としていない方でも読む事ができる様,なるべくコンパクトに執筆しました。この本をきっかけにバイオインフォマティクス分野へ参入してくださる方が増えれば幸いです。
キーワード
分子生物学,セントラルドグマ,オミクスデータ,シーケンサー,ゲノム,エピゲノム,トランスクリプトーム,転写制御,転写後発現制御,プロテオーム,生体分子,高次構造,分子間相互作用,進化遺伝学,比較ゲノム,微生物学, メタゲノム

バイオインフォマティクスseries2

生物ネットワーク解析

生物ネットワーク解析の基礎から応用までを,具体的な事例を交えながら解説

バイオインフォマティクスシリーズ2 生物ネットワーク解析
  • 浜田 道昭 監修/ 竹本 和広 著
  • A5サイズ/222頁
  • 定価3,520円(本体3,200円+税)
書籍の特徴
  • 生物ネットワーク解析の基礎から応用までを,いくつかの具体的な事例を交えながら説明しました。
  • 高校レベルの数学知識に加えて,入門レベルの線形代数の知識で読み進められる内容となっています。
  • 生物学分野から見た場合もわかりやすくなるよう意識しました。
  • 本書で紹介する手法や解析などの一部は,統計解析ソフトウェアRとそのネットワーク解析用パッケージのigraphを用いて体験できます。(本書詳細ページの「関連資料」参照

【各章について】

  1. 1章:生物ネットワーク解析を学ぶ上での基礎事項
  2. 2章:ネットワーク解析で頻出する基本的な指標
  3. 3章:ネットワーク解析の理論の中心をなすいくつかの代表的なネットワークモデルについて説明しています。
  4. 4章~7章にかけて,代表的な生物ネットワーク解析を紹介しています。
  5. 4章:ネットワークにおける重要なノードを順位づけするために用いられる中心性解析
  6. 5章:ネットワークを制御するための重要なノードを見つけるために用いられるネットワーク可制御性解析
  7. 6章:ネットワークをクラスタリングするために用いられるコミュニティ検出
  8. 7章:オミクスデータから生物ネットワークを推定するために用いられる相関ネットワーク解析
    について紹介しました。
目次
1. 生物ネットワーク解析の基礎
1.1 なぜ生物ネットワーク解析か
 1.1.1 生物学における多様な役者たち
 1.1.2 システム的理解とネットワーク科学
1.2 ネットワーク解析の準備
 1.2.1 ネットワークの基礎
 1.2.2 ネットワークの種類
 1.2.3 行列表現
 1.2.4 経路と閉路
 1.2.5 部分ネットワーク
 1.2.6 連結性と連結成分
1.3 さまざまな生物ネットワーク
 1.3.1 遺伝子制御ネットワーク
 1.3.2 タンパク質構造ネットワーク
 1.3.3 タンパク質相互作用ネットワーク
 1.3.4 代謝ネットワーク
 1.3.5 脳ネットワーク
 1.3.6 生態系ネットワーク
 1.3.7 疾病や創薬に関連するネットワーク

2. 基本的なネットワーク指標
2.1 次数
 2.1.1 無向ネットワークの場合
 2.1.2 有向ネットワークの場合
 2.1.3 重み付きネットワークの場合
 2.1.4 次数分布
 2.1.5 スケールフリー性
2.2 次数相関
 2.2.1 同類度係数
 2.2.2 同類度係数の拡張版
2.3 クラスタ係数
 2.3.1 各ノードに対するクラスタ係数
 2.3.2 平均クラスタ係数
 2.3.3 重み付きクラスタ係数
2.4 最短経路長
 2.4.1 平均最短経路長
 2.4.2 大域効率性

3. ネットワークモデル
3.1 Erdös-Rényiのランダムネットワークモデル
 3.1.1 Erdös-Rényiモデル
 3.1.2 次数分布
 3.1.3 平均最短経路長
 3.1.4 クラスタ係数
 3.1.5 現実のネットワークとの比較
3.2 格子ネットワーク
 3.2.1 格子ネットワークとは
 3.2.2 平均クラスタ係数
 3.2.3 平均最短経路長
3.3 Watts-Strogatzのスモールワールドネットワークモデル
3.4 Barabási-Albertのスケールフリーネットワークモデルとその改良版
 3.4.1 Barabási-Albertモデルとそのネットワークの性質
 3.4.2 Barabási-Albertモデルの改良版
 3.4.3 優先接続の検証
 3.4.4 優先接続の解釈
3.5 Chung-Luモデル
3.6 コンフィギュレーションモデル
3.7 ランダム化ネットワーク
3.8 ネットワーク指標の統計的有意性評価
 3.8.1 Z検定に基づく評価
 3.8.2 経験的p値に基づく評価
 3.8.3 比に基づく評価
 3.8.4 ランダムネットワークとの比較の妥当性

4. 中心性解析
4.1 中心性解析とは
4.2 次数中心性
4.3 固有ベクトル中心性
4.4 PageRank
4.5 近接中心性とその別形
 4.5.1 近接中心性
 4.5.2 点効率性
4.6 媒介中心性
4.7 そのほかの中心性指標
 4.7.1 カッツ中心性
 4.7.2 サブグラフ中心性
4.8 統計解析や機械学習における中心性

5. ネットワーク可制御性解析
5.1 可制御性
5.2 構造可制御性
5.3 最大マッチングに基づくドライバ・ノードの求め方
5.4 最小支配集合に基づくドライバ・ノードの求め方
5.5 ネットワーク可制御性に基づくノード分類

6. コミュニティ検出
6.1 コミュニティ検出とは
6.2 ノード間の類似度に基づくコミュニティ検出
 6.2.1 階層的クラスタリング
 6.2.2 構造的重複度に基づくクラスタリング
 6.2.3 そのほかの類似度に基づくクラスタリング
6.3 モジュラリティに基づくコミュニティ検出
 6.3.1 モジュラリティ
 6.3.2 重み付きネットワークや有向ネットワークにおけるモジュラリティ
 6.3.3 モジュラリティ最大化問題としてのコミュニティ検出
 6.3.4 ネットワーク間でのモジュラリティの比較
 6.3.5 モジュラリティ最大化に基づくコミュニティ検出の限界
 6.3.6 そのほかのコミュニティ分割指標
6.4 機能地図作成
6.5 コミュニティの重複を考慮する場合
 6.5.1 エッジ間の構造的重複度に基づく手法
 6.5.2 モジュラリティ最大化に基づく手法

7. 相関ネットワーク解析
7.1 相関ネットワーク解析とは
7.2 相関ネットワーク解析の基本
7.3 相関ネットワークの閾値化
 7.3.1 p値による閾値化
 7.3.2 相関係数による閾値化
7.4 重み付き相関ネットワーク解析
7.5 偏相関ネットワーク解析
 7.5.1 偏相関ネットワーク解析の基本
 7.5.2 偏相関と多重回帰
 7.5.3 偏相関ネットワーク解析の限界
 7.5.4 正則化付き偏相関ネットワーク解析
7.6 相対量を考える場合
 7.6.1 オミクスデータにおける相対量
 7.6.2 定数和制約による見せかけの相関
 7.6.3 対数比変換
 7.6.4 相対量データに対する相関ネットワーク解析
 7.6.5 相対量データに対する偏相関ネットワーク解析
7.7 相関ネットワークの比較
7.8 相関ネットワーク解析は「なに」を推定しているのか

引用・参考文献
索引
more
著者からのメッセージ
学部生をはじめとする初学者も無理なく読めるよう平易に執筆しました。実際の生物ネットワーク解析や新規手法の開発に役立てていただければ幸いです。
キーワード
遺伝子ネットワーク,タンパク質ネットワーク,代謝化合物ネットワーク,生態系ネットワーク,脳ネットワーク,疾病ネットワーク,創薬ネットワーク,ランダムネットワーク,格子ネットワーク,スモールワールドネットワーク,スケールフリーネットワーク,ネットワーク指標,クラスタリング,中心性解析,コミュニティ検出,モジュラリティ,相関ネットワーク解析,偏相関ネットワーク解析,ネットワーク可制御性解析,統計解析,機械学習

バイオインフォマティクスseries3

生物統計

データサイエンスを活用した生命研究をするために必要な,統計科学の基礎を解説

NEW
バイオインフォマティクスシリーズ3 生物ネットワーク解析
  • 浜田 道昭 監修/ 木立 尚孝 著
  • A5サイズ/268頁
  • 定価4,180円(本体3,800円+税)
書籍の特徴
  • 生命ビッグデータに対し統計解析を行う際に重要な概念と技法を説明しました。
  • 紹介する手法の多くに丁寧な数学的導出をつけました。これにより読者が各手法の原理を理解したうえで自信をもって使いこなせるようになることを目指しました。
  • 生命ビッグデータに対し,仮説検定を用いる際に重要な多重検定補正の概念や,人工知能・機械学習手法を用いる際に重要なオーバーフィッティングの概念については実例を交え詳しく説明しました。

【各章について】

  1. 1章:統計解析の目的と確率論の基礎事項を解説。
  2. 2章:統計解析で頻繁に用いられる確率分布の具体例を挙げる。
  3. 3章:確率論の重要定理である大数の法則と中心極限定理についての解説。
  4. 4章:仮説検定や統計的有意性の概念についての詳細な解説。
  5. 5章:データ解析の現場で頻繁に用いられる仮説検定手法の具体例を挙げる。
  6. 6章:一度に多数の仮説検定を行う際に重要となる多重検定補正の手法について解説。
  7. 7章:確率モデル解析の概念について説明し,確率モデルに含まれるパラメータをデータから推定するために用いられる最尤推定法について解説。
  8. 8章:データのクラスタ構造を把握するために使われる混合正規分布について導入し,そのパラメータを推定するために使われる期待値最大化法について解説。
  9. 9章:説明変数から目的変数を予測する回帰モデルを照会した後,モデルのオーバーフィッティングを避けるために導入される正則化項とベイズ推定法との関連について解説。
  10. 10章:生命過程の確率的なゆらぎをモデル化するために有用なマルコフ過程とその平行分布について実例を挙げながら解説。
  11. 11章:計算機を用いたランダムサンプリングの手法と,ランダムサンプリングを用いて,期待値計算や数値積分を行う方法とその原理について解説。
  12. 12章:ベイズ推定の事後分布の性質を調べるために有用なマルコフ連鎖モンテカルロ法について解説。
  13. 13章:確率過程における到達時刻の概念について解説し,これに付随して現れるいくつかの確率分布を紹介。
目次 ※発行前情報のため,一部変更となる場合がございます
1. 統計解析の目的と確率空間
1.1 確率的現象
1.2 統計解析の目的と限界
1.3 確率空間の定義
1.4 確率空間の例
1.5 確率変数
1.6 確率変数の例
1.7 確率変数とランダムサンプリングの解釈
1.8 確率分布関数と確率密度関数
1.9 確率分布の表記
1.10 複数の確率変数の同時確率分布
1.10.1 同時確率分布
1.10.2 周辺分布
1.10.3 条件付き確率分布
1.10.4 統計的に独立な確率変数
1.11 期待値
1.12 指示関数
1.13 分散と共分散
1.14 相関係数
1.15 サンプル値からの推定
1.16 特性関数
1.17 カルバック・ライブラー情報量

2. 確率分布の具体例
2.1 ベルヌーイ分布
2.2 二項分布
2.3 カテゴリカル分布
2.4 多項分布
2.5 1変数正規分布
2.6 ガンマ分布
2.7 多変数正規分布
2.8 一様分布
2.9 退化分布
2.10 ディラックのデルタ関数
2.11 経験分布

3. 大数の法則と中心極限定理
3.1 観測データの頻度分布
3.2 標本平均が従う確率分布
3.3 大数の法則
3.4 大数の法則の例
3.5 大数の法則の極限へ近づく速さ
3.6 中心極限定理
3.7 中心極限定理の例

4. 仮説検定とP値
4.1 仮説検定の概念
4.2 仮説検定の手順
4.3 P値
4.4 経験分布を用いた仮説検定
4.5 統計的有意性の解釈

5. 仮説検定の例
5.1 二項検定
5.2 フィッシャーの正確確率検定
5.3 χ^2検定とχ^2分布
5.4 χ^2適合度検定
5.5 χ^2独立性検定
5.6 χ^2適合度検定の導出
5.7 t検定
5.8 スチューデントのt分布の導出
5.9 マン・ホイットニーのU検定
5.10 コルモゴロフ・スミルノフ検定

6. 多重検定補正とfalsediscoveryrate
6.1 多重検定補正の必要性
6.2 ボンフェローニ補正
6.3 falsediscoveryrate
6.4 Benjamini-Hochberg法
6.5 quantile-quantileプロットと順序統計量
6.6 Benjamini-Hochberg法の導出
6.7 Benjamini-Yekutieli法
6.8 Storey法

7. 確率モデル解析と最尤推定法
7.1 仮説検定の問題と確率モデル解析
7.2 尤度
7.3 最尤推定法
7.4 最尤推定法の例
7.5 最尤推定量の漸近的性質
7.6 モデル分布の同一性とヘッセ行列

8. 混合正規分布と期待値最大化法
8.1 混合正規分布
8.2 期待値最大化法の原理
8.3 期待値最大化法の例
8.4 交差検証による成分数の決定

9. 回帰モデルの正則化とベイズ推定
9.1 多項式回帰と最小2乗法
9.2 多項式回帰の確率モデル
9.3 過適合
9.4 正則化最小2乗法
9.5 ベイズ推定
9.6 正則化最小2乗法の確率モデルによる解釈

10. マルコフ過程と平衡分布
10.1 確率過程の定義
10.2 マルコフ過程
10.3 遷移確率行列の性質
10.4 生成消滅過程
10.5 マルコフ鎖のランダムサンプリング
10.6 P_nの漸近的振る舞いの例
10.7 平衡分布
10.8 平衡分布からのランダムサンプリング
10.9 連続状態マルコフ過程の平衡分布
10.10 連続状態マルコフ過程の例

11. ランダムサンプリングと数値積分
11.1 ランダムサンプリングと乱数生成法
11.2 線形合同法
11.3 確率分布関数からのランダムサンプリング
11.4 棄却法によるランダムサンプリング
11.5 確率変数の変数変換を用いる方法
11.6 期待値計算と数値積分

12. 事後分布とマルコフ連鎖モンテカルロ法
12.1 事後分布からのランダムサンプリング
12.2 メトロポリス・ヘイスティングス法
12.3 マルコフ連鎖モンテカルロ法の例
12.4 期待値計算と有効サンプルサイズ
12.5 提案分布のパラメータの調節の例
12.6 ギブスサンプリング
12.7 ギブスサンプリングの例

13. 到達時刻とポアソン過程
13.1 到達時刻の定義
13.2 ベルヌーイ過程の例
13.3 幾何分布
13.4 指数分布
13.5 指数分布の無記憶性
13.6 無記憶性の証明

付録
A.1 集合と写像
A.2 ベクトル空間
A.3 行列
A.4 微分と積分
A.5 関数論
引用・参考文献
索引
more
著者からのメッセージ
生命ビッグデータ解析で重要となる統計解析の基礎概念と手法について解説しました。様々な手法を紹介していますが,それらの原理を丁寧に説明することで,読者が納得して使えるようになることを目指しました。データ解析の現場で役立てていただければ幸いです。
キーワード
統計解析,確率変数,大数の法則,中心極限定理,仮説検定,P値,多重検定補正,確率モデル,最尤推定法,混合正規分布,期待値最大化法,回帰分析,オーバーフィッティング,ベイズ推定,確率過程,マルコフ過程,ランダムサンプリング,マルコフ連鎖モンテカルロ法,到達時刻
株式会社 コロナ社