従って、各桁 $i(0 \le i \le 3)$ における論理変数 $c_{i+1} q_i$ 'の値は下の表のようになるから、これらは半加算器を用いて実現できる. なお、この表で、 d_i は i 桁目の値を覚える D フリップフロップの入力である.

q_{i}	c_{i}	c_{i+1}	q_i ' = d_i
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

これらより、4 ビットのアップカウンタを下図のように作成できる. ただし、ここでは、半加算器を XOR ゲートと AND ゲートに分解して描いている.

