題意の回路を設計するために、以下の 3 状態 Q_0 , Q_1 , Q_2 を定義する.

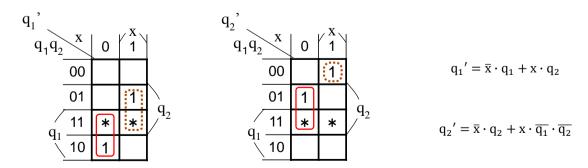
状態	状態の説明	状態符号 q ₁ , q ₂	
\mathbf{Q}_0	1が1個も入ってない状態	0, 0	
\mathbf{Q}_1	1が1個入った状態	0, 1	
\mathbf{Q}_2	1が2個入った状態	1, 0	

また、reset 入力付き D フリップフロップを利用できるので、2 つの状態変数 q_1 、 q_2 を用い、初期状態 Q_0 を $q_1=0$ 、 $q_2=0$ として、状態符号を上の表に示したように割り当てる。このとき、 Q_0 以外の状態には異なる符号を割り当てることもできる。

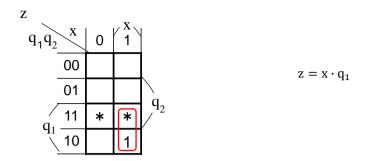
これらを利用すれば、所望の 3 カウンタの状態遷移表および出力表は以下のように書ける. なお、この表には、状態を表す記号 (Q_0, Q_1, Q_2) と状態符号の両方を書いている.

現状態		次状態	q ₁ ', q ₂ '	出力 z	
q ₁ , q ₂	入力 x	0	1	0	1
Q_0		Q_0	Q_1	0	0
0, 0		0, 0	0, 1		
Q_1		Q_1	Q_2	0	0
0, 1		0, 1	1, 0		
Q_2		Q_2	Q_0	0 1	
1, 0		1, 0	0, 0	U	•
1, 1		*, *	*, *	*, *	*, *

この状態遷移表から,次状態 q_1 ', q_2 ' のカルノー図が下図のように得られ,これらのカルノー図より, q_1 ', q_2 ' の最簡な積和型論理式が得られる.



また, 出力表から, 出力 z のカルノー図と最簡な積和型論理式が下記のように得られる.



そこで、状態変数 \mathbf{q}_1 および \mathbf{q}_2 ' を格納する DFF のデータ入力をそれぞれ \mathbf{d}_1 および \mathbf{d}_2 とすると、これらの入力方程式が以下のように得られる.

$$\begin{split} d_1 &= \overline{x} \cdot q_1 + x \cdot q_2 = \overline{\overline{x} \cdot q_1 + x \cdot q_2} = \overline{(\overline{x} \cdot q_1) \cdot (\overline{x} \cdot \overline{q_2})} \\ \\ d_2 &= \overline{x} \cdot q_2 + x \cdot \overline{q_1} \cdot \overline{q_2} = \overline{\overline{x} \cdot q_2 + x \cdot \overline{q_1} \cdot \overline{q_2}} = \overline{(\overline{x} \cdot q_2) \cdot (\overline{x} \cdot \overline{q_1} \cdot \overline{q_2})} \end{split}$$

また, 出力 z の出力方程式も NAND を用いて下記のように書ける.

$$z=x\cdot q_1=\overline{(\overline{x\cdot q_1})}$$

これらの式より,以下の回路が得られる.

