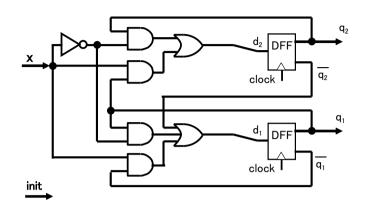
与えられた回路は, init = 0 のとき, 以下の回路になる.



従って, init = 0 のときの状態遷移関数は, 次のような関数となる.

$$q_1' = \overline{q_2} + \overline{x} \cdot q_1 + x \cdot \overline{q_1}$$
$$q_2' = \overline{x} \cdot q_2 + x \cdot q_1$$

これらの式から、状態遷移表は右のようになることが分かる。また、出力は現状態の値 (q_1, q_2) であることに注意して、この表から状態遷移図を描くと、下図のようになる。 さらに、init = 1 が入力されたときの次状態は $q_1 = 0$, $q_2 = 1$ となるから、初期状態は、 $(q_1, q_2) = (0, 1)$ であることが分かる。

現状態 (q ₁ , q ₂)	次状態	(q_1', q_2')
入力 (x)	0	1
0, 0	1, 0	1, 0
0, 1	0, 1	1, 0
1, 0	1, 0	1, 1
1, 1	1, 1	0, 1



この状態遷移表から、状態 $(q_1, q_2) = (0, 0)$ は、初期状態 $(q_1, q_2) = (0, 1)$ から状態遷移を繰り返しても 到達できない状態であり、出力が (0, 0) にはならないことが分かる. 従って、この回路は、1 が入力される度 に、状態が、 $(0, 1) \rightarrow (1, 0) \rightarrow (1, 1) \rightarrow (0, 1)$ と順に変わり続ける回路であり、これに従って出力も $(0, 1) \rightarrow (1, 0) \rightarrow (1, 1) \rightarrow (0, 1)$ と循環し、カウンタの動作をする回路であると言える.