正誤表 No.3 (2013-11-18)

「追加」の欄は正誤表 No.2(2012-09-04版)からの追加分

頁	行	誤 (*印は誤内容)	正
10	14~15	式 (2-2) のように時々刻々の値を	 式 (2-2) で示したような時々刻々
		示す式を瞬時値	の値を瞬時値
		*表現が不適当	
14	2		
		$= \sqrt{\frac{V_o^2}{2T}} [t - \cos 2(\omega t + \theta)/2\omega]_0^T$	$= \sqrt{\frac{V_o^2}{2T}} [t - \sin 2(\omega t + \theta) / 2\omega]_0^T$
		$*\cos 2(\omega t + \theta)$ は $\sin 2(\omega t + \theta)$ の間違い	
16	4	$=\frac{2}{T}\int v(t)dt = \frac{2}{T}V_{o}\frac{2}{T}\frac{1}{2} =$	$=\frac{2}{T}\int_{0}^{\frac{T}{2}}v(t) dt = \frac{2}{T}V_{0}\frac{T}{2}\frac{1}{2}=$
		*積分範囲が欠落、2/T の一つが	$T J_0 \qquad T = 22$
		T/2 の間違い	
17	16	半周期 1/2T	半周期 T/2
27	11	虚部 jy	虚部 y
		*j は不要	
34	下 9	電圧降下	端子電圧
34	下7	Rの電圧降下	Rの端子電圧
34	下7	Lの電圧降下	Lの端子電圧
38	下 4	[rad]	[rad/s]
		*/s が欠落	
39	7	[rad]	[rad/s]
39	15	<u>Y=1/Z=I/Z=</u>	<u>·</u> Y=1/Z=I/V=
52	13	[rad]	[rad/s]
62	下1	· · · · · · · · · · · · · · · · · · ·	ΣΖiIi + Σ Vi
		*式が文章の順番になっていない	
63	下 5	両端電位差	両端の電位差
74	8	両端電位差	両端の電位差

74	18	$\dot{V}_1 = 100V, \dot{V}_2 = 50e^{j\frac{\pi}{2}} = 50\angle 90^o[V]$	$\dot{E}_1 = 100[V], \dot{E}_2 = 50e^{j\frac{\pi}{2}} = 50\angle 90^o[V]$
		*電源電圧は E, 単位の括弧無し	
74	18	$=10+j10[\Omega]=\overline{Z_2}$	$=10+j10[\Omega]=\overline{\dot{Z}_2}$
		ドットが欠落	_
75	下 2	$\dot{Z}_2 = r_2 - jx_2 = 4 + j3[\Omega]$	$\dot{Z}_2 = r_2 + jx_2 = 4 + j3[\Omega]$
		* 「一」ではなく,「+」	
83	図 6.6		- Seed of A
	(c)	電源あり	電源除去
114	19	$i_n = \frac{\sqrt{2}V_{ne}}{\left \dot{Z}_n\right }\sin(\omega t + \theta_n - \varphi_n)$	$i_n = \frac{\sqrt{2}V_{ne}}{\left \dot{Z}_n\right }\sin(n\omega t + \theta_n - \varphi_n)$
		* n の欠落	
121	4	$= \frac{1}{T} \int_0^T f(t) dt + \frac{1}{T} \int_0^{\frac{T}{2}} f(-t) dt = \frac{2}{T} \int_0^{\frac{T}{2}} f(t) dt$	$dt = \frac{1}{T} \int_0^{\frac{T}{2}} f(t)dt + \frac{1}{T} \int_0^{\frac{T}{2}} f(-t)dt = \frac{2}{T} \int_0^{\frac{T}{2}} f(t)dt$
		*最初の項の積分範囲は0からT/2	
		の間違い	
130	図 9.1	*スイッチSの矢印の向きが逆	スイッチSの矢印は閉じる方向
137	図 9.9	*スイッチSの矢印の向きが逆	スイッチSの矢印は閉じる方向
141	下 2	t =T 付近で	t=0 付近で
142	1	$E\frac{t}{CP}$	<u>t</u>
		CR	CR
		*Eは不要	
143		しかしながら、 $t=T$ のとき $e^{-T/CR}$ で	しかしながら,t=Tで
144	図 9.21	あるから *スイッチ S の矢印の向きが逆	スイッチSの矢印は閉じる方向
149	図 9.21 図 9.25	*スイッチSの矢印の向きが逆	スイッチSの矢印は閉じる方向
$\frac{149}{155}$	8	さらに,回転磁界,対称座標法につ	
100	O	いても	C 5 (C, E) HARMAPING JV C O
157	下1	図 (b) の	図 (c) の
167	下 9	$\dot{V}_{\mathrm{P}} =$	$V_P =$
		*ドットが不要	
167	下 9	i=	I=
		*ドットが不要	
167	下7	$=3 V_P I \cos \varphi$	=3 V _P I cosφ
		* が不要	

168	11	$\dot{ m V}_{ m LL} =$	$V_{ m LL} =$
		* ドットが不要	
174	下 4	· V _{bc} との位相差	· · · · · · · · · · · · · · · · · · ·
追加		100 0 1 11172	16. 6. 20. 2 (2.17)
176	8	$\dot{V}_{e} =$	$V_{\rm e}=$
追加		** * ドットが不要	
176	式	(-	(./3 1)
追加	(10.108)	$V_e I_e \left(\frac{\sqrt{3}}{2} \cos \varphi - \frac{1}{2} \sin \varphi \right)$	$V_e I_e \left(\frac{\sqrt{3}}{2} \cos \varphi + \frac{1}{2} \sin \varphi \right)$
176	式	(./3 1)	$V_{I}(\sqrt{3}, \dots, 1, \dots)$
追加	(10.109)	$V_e I_e \left(\frac{\sqrt{3}}{2} \cos \varphi + \frac{1}{2} \sin \varphi \right)$	$V_e I_e \left(\frac{\sqrt{3}}{2} \cos \varphi - \frac{1}{2} \sin \varphi \right)$
181	13	· Pa+jPrV _{ac}	Pa+jPr=V _{ac}
		*=が欠落	
193	図 11.11	*ω=0でX=0となっていない	ω=0 で X=0 を通る線
194	図 11.13	*ω=0でX=0となっていない	ω=0 で X=0 を通る線
238	演習問題	$\dot{I}_1 = 6 - j4.5[A] = 7.5 \angle -36.8^{\circ}[A]$	$\dot{I}_1 = 8 - j3.5[A] = 8.7 \angle -23.6^{\circ}[A]$
	解答 5 章	$\dot{I}_3 = 3 - j[A] = 3.2 \angle -18.4^{\circ}[A]$	$\dot{I}_3 = 9 - j3[A] = 9.5 \angle -18.4^{\circ}[A]$
	5.1(2)	$st \dot{I}_1, \dot{I}_3$ は計算間違い	
238	5 章 5.2	$\dot{I}_{a} = \frac{(\dot{Z}_{ab} + \dot{Z}_{b} + \dot{Z}_{bc})(\dot{Z}_{bc} + \dot{Z}_{c})\dot{V} - \dot{Z}_{ab}\dot{V}}{\Delta}$	$\dot{I}_{a} = \frac{(\dot{Z}_{ab} + \dot{Z}_{b} + \dot{Z}_{bc})(\dot{Z}_{bc} + \dot{Z}_{c})\dot{V} - \dot{Z}_{bc}^{2}\dot{V}}{\Delta}$
		$* \dot{Z}_{ab} \dot{V}$ は、 $\dot{Z}_{bc}^{2} \dot{V}$ の誤り。	
238	5 章 5.3	$\dot{I}_{a} = \frac{(\dot{Z}_{2} + \dot{Z}_{3})\dot{V}_{1} - \dot{Z}_{3}\dot{V}_{2} - \dot{Z}_{2}\dot{V}_{3}}{\dot{Z}_{1}\dot{Z}_{2} + \dot{Z}_{2}\dot{Z}_{3} + \dot{Z}_{1}\dot{Z}_{3}}$	$\dot{I}_{a} = \frac{(\dot{Z}_{2} + \dot{Z}_{3})\dot{V}_{1} - \dot{Z}_{3}\dot{V}_{2}}{\dot{Z}_{1}\dot{Z}_{2} + \dot{Z}_{2}\dot{Z}_{3} + \dot{Z}_{1}\dot{Z}_{3}}$
			$\dot{I}_{b} = \frac{\dot{Z}_{2}\dot{V}_{1} + \dot{Z}_{1}\dot{V}_{2}}{\dot{Z}_{1}\dot{Z}_{2} + \dot{Z}_{2}\dot{Z}_{2} + \dot{Z}_{1}\dot{Z}_{2}}$
		$\vec{I}_{1} = -\vec{I}_{a} = \frac{-(\dot{Z}_{2} + \dot{Z}_{3})\dot{V}_{1} + \dot{Z}_{3}\dot{V}_{2} + \dot{Z}_{2}\dot{V}_{3}}{\dot{Z}_{1}\dot{Z}_{2} + \dot{Z}_{2}\dot{Z}_{3} + \dot{Z}_{1}\dot{Z}_{3}}$	1 2 2 3 1 3
		1 2 2 3 1 3	$\dot{I}_{3} = \dot{I}_{b} = \frac{\dot{Z}_{2}\dot{V}_{1} + \dot{Z}_{1}\dot{V}_{2}}{\dot{Z}_{1}\dot{Z}_{2} + \dot{Z}_{2}\dot{Z}_{2} + \dot{Z}_{1}\dot{Z}_{2}}$
		$\dot{I}_{3} = \dot{I}_{b} = \frac{\dot{Z}_{2}\dot{V}_{1} + \dot{Z}_{1}\dot{V}_{2} - (\dot{Z}_{1} + \dot{Z}_{3})\dot{V}_{3}}{\dot{Z}_{1}\dot{Z}_{2} + \dot{Z}_{2}\dot{Z}_{3} + \dot{Z}_{1}\dot{Z}_{3}}$	$ \dot{I}_{2} = \dot{I}_{a} - \dot{I}_{b} = \frac{\dot{Z}_{3}\dot{V}_{1} - (\dot{Z}_{1} + \dot{Z}_{3})\dot{V}_{2}}{\dot{Z}_{1}\dot{Z}_{2} + \dot{Z}_{2}\dot{Z}_{2} + \dot{Z}_{1}\dot{Z}_{2}} $
		$\dot{I}_{2} = \dot{I}_{a} - \dot{I}_{b} = \frac{\dot{Z}_{3}\dot{V}_{1} - (\dot{Z}_{1} + \dot{Z}_{3})\dot{V}_{2} + \dot{Z}_{1}\dot{V}_{3}}{\dot{Z}_{1}\dot{Z}_{2} + \dot{Z}_{2}\dot{Z}_{3} + \dot{Z}_{1}\dot{Z}_{3}}$	$Z_1Z_2 + Z_2Z_3 + Z_1Z_3$
		st 回路中に電源 \dot{V}_3 は無い。	
		$\dot{I}_{\scriptscriptstyle 1}$ と $\dot{I}_{\scriptscriptstyle a}$ は同方向であり $\dot{I}_{\scriptscriptstyle 1}=\dot{I}_{\scriptscriptstyle a}$	
238	5 章 5.5	$\dot{I}_1 = 4.78 - j1.8[A] = 5.13 \angle -21.4^{\circ}[A]$.*
		$\dot{I}_2 = -0.16 + j1.6[A] = 1.67 \angle 95.6^{\circ}[A]$	$\dot{I}_2 = -0.965 + j0.0677[A] = 0.97 \angle 176.0^{\circ}[A]$

		$\dot{I}_3 = 3.46 - j2.76[A] = 4.43 \angle -38.6^{\circ}[A]$	$\dot{I}_3 = 1.708 + j0.265[A] = 1.72 \angle 8.8^{\circ}[A]$
		$oldsymbol{*}\dot{I_1},\dot{I_2},\dot{I_3}$ は計算間違い	
239	7章 7.1	$\begin{split} \dot{I}_1 &= -j \frac{(L_2 - M - \frac{1}{\omega C_2})}{\varpi \left\{ (M - 1)(L_1 - M - \frac{1}{\omega C_1})(L_2 - M - \frac{1}{\omega C_2}) \right\}} \dot{V} \\ \dot{I}_2 &= -j \frac{(L_1 - M - \frac{1}{\omega C_1})}{\varpi \left\{ (M - 1)(L_1 - M - \frac{1}{\omega C_1})(L_2 - M - \frac{1}{\omega C_2}) \right\}} \dot{V} \\ & * \dot{I}_1, \dot{I}_2 \ \ \ \dot{I}_1 = -j \frac{(L_1 - M - \frac{1}{\omega C_1})(L_2 - M - \frac{1}{\omega C_2})}{\varpi \left\{ (M - 1)(L_1 - M - \frac{1}{\omega C_1})(L_2 - M - \frac{1}{\omega C_2}) \right\}} \dot{V} \end{split}$	$\dot{I}_{1} = \frac{j(\omega L_{2} - \frac{1}{\omega C_{2}} - \omega M)}{\frac{L_{1}}{C_{2}} + \frac{L_{2}}{C_{1}} - \frac{1}{\omega^{2} C_{1} C_{2}} - \omega^{2} L_{1} L_{2} + \omega^{2} M^{2}} \dot{V}$
		$\sigma \left\{ (M-1)(L_1-M-\frac{1}{\omega C_1})(L_2-M-\frac{1}{\omega C_2}) \right\}$ * \dot{I}_1, \dot{I}_2 は計算間違い	$\dot{I}_{2} = \frac{j(\omega L_{1} - \frac{1}{\omega C_{1}} - \omega M)}{\frac{L_{1}}{C_{2}} + \frac{L_{2}}{C_{1}} - \frac{1}{\omega^{2} C_{1} C_{2}} - \omega^{2} L_{1} L_{2} + \omega^{2} M^{2}} \dot{V}$
239	7 章 7.2 解答	$\dot{I}_{ab} = \left[\frac{r\omega^2 (M^2 - L^2) + 2\varpi^2 r L (L - M)}{\left\{ \omega^2 (M^2 - L^2) \right\}^2 + \left\{ 2\omega r (L - M) \right\}^2} + \right]$	$\dot{I}_{ab} = \left[\frac{r\omega^2 (M^2 - L^2) + 2\varpi^2 r L (L - M)}{\left\{ \omega^2 (M^2 - L^2) \right\}^2 + \left\{ 2\omega r (L - M) \right\}^2} + \right]$
		$ \int \frac{\omega^3 L(M^2 - L^2) + 2\omega r^2 (L - M)}{\left\{\omega^2 (M^2 - L^2)\right\}^2 + \left\{2\omega r (L - M)\right\}^2} \right] \dot{V}_{ab} $	$j \frac{\omega^{3} L(M^{2} - L^{2}) - 2\omega r^{2}(L - M)}{\left\{\omega^{2}(M^{2} - L^{2})\right\}^{2} + \left\{2\omega r(L - M)\right\}^{2}} \dot{V}_{ab}$
		* jの項の分子の「+」が「-」	
240	8章 8.4	$f(t) = \frac{E}{2} \left(1 - \frac{\sin 2\omega t}{\pi} - \frac{\sin 4\omega t}{2\pi} - \frac{\sin 6\omega t}{3\pi} - \cdots \right)$	$f(t) = E\left(\frac{1}{2} - \frac{\sin 2\omega t}{\pi} - \frac{\sin 4\omega t}{2\pi} - \frac{\sin 6\omega t}{3\pi} - \cdots\right)$
		st第2項以降の係数は E 2倍ではなく E 倍の間違い	