自然界に存在しないモノ,すなわち人工物を創り出すことが技術者・工学者の夢である。20世紀から今世紀にかけて、科学と技術の進歩によって数多くの人工物が産み出された。特に、20世紀の後半からは、エレクトロニクスと、それを基盤とする情報通信技術の急速な展開が人間や社会を大きく変えてきている。工学は、我々の暮らしを豊かにし、公共の安全や健康・福祉のために役立つためのモノやシステムを創造することを目的とした学問分野である。工学の対象となるモノやシステムは、経済性や安全性、保守運用などの観点も踏まえて構築されなければならない。その意味で、工学には設計の概念が必須である。論理的で合目的的な設計指針の下に、人類に役立つモノやシステムを構想する。さらに、それを実現するための製造プロセスを、制御可能な形で確立することが工学の最も重要なポイントである。

一方,工学に対して理学は、自然界の現象やモノの状態の根本的な理解を追求する学問分野である。その中で、物性物理学は、物質のもつさまざまな性質(電気的性質、光学的性質、熱的性質、力学的性質など)を対象とする物理学の一分野である。本書で扱った内容は、物性物理学が対象とする範囲のごく一部である。

さて、40年以上も前のことになるが、著者が学部3年(工学部電子工学科)のころには、既に「物性工学」という授業科目があった。しかし、授業の内容は物性物理学の基礎であり、上記の「設計と制御」という観点からすれば、工学的な要素はほとんどなかったように記憶している。本書のタイトルも「電子物性工学」とはしているものの、自然界には存在しない新しい物性を創出するための設計論という工学の立場では書かれていない。その意味では、表題からは「工学」の文字をとった方がよいのかもしれない。

とはいえ、本書は、工学の教科書として、以下の3点に特徴をもたせたつもりである。

(1) 本書が想定した主な読者は、電気電子・情報通信分野の学部2年次から3年次前半、および工業高等専門学校の4・5年次の学生である。本書は、こうした学生が、半導体工学、デバイス工学、光・量子エレクトロニクス、電気電子材料工学といった、電気電子工学・情報通信工学の展開科目を学ぶ上で基礎となる内容を精選した。物理的な概念を理解することが基本であることはいうまでもないが、技術者・工学者にとっては、実際に観測や測定される量の大きさを、具体的な数値として把握しておくことが大切である。そのために、本書は、数値を見積もるための例題を随所に配し

た. そこでは、仮数部の正確さにはあまり神経質にならずに、指数部分に注意を払って欲しい. 見積もったオーダの値を記憶しておくことが重要であり、実際の場面で役立つであろう.

- (2) 電気電子・情報通信分野の学生の大半は、本書に関係する科目以外にも、電磁気学、信号処理や通信工学に関連する科目も併せて履修していることと思われる。波動の取扱いやフーリエ解析など、本書で用いた数学的な取扱いの大部分は、基本的にはこれらの科目の中で用いられているものと変わらない。著者も経験したことだが、初学者が物性物理学を学ぶ際に最初に戸惑うのは、波動やフーリエ解析が3次元のベクトルになっているからと思われる。そこで、本書では、信号解析などとの類似性が実感できるように、1次元での取扱いについて丁寧に行った。
- (3) 現在,自然界には存在しない新しい物性を創出する「物性工学」は大きく進展している。1970年に,EsakiとTsuが提唱した半導体超格子がその嚆矢であり、それ以来,半導体分野で培われた薄膜技術やナノ加工技術などが成熟したことも相まって,低次元系電子状態を設計・制御できるようになってきた。そこで,本書は,2次元や1次元の電子系の取扱いについても最小限の記述を行った。

なお、本書の執筆にあたっては、東京工業大学名誉教授・古屋一仁先生(現・東京工業高等専門学校校長)に懇切丁寧な査読をいただいた。ときにくじけそうになりながらも、ようやく本書が完成に至ったのは、ひとえに、コロナ社からの我慢強い叱咤激励のたまものである。また、コロナ社の方々には原稿校正などでご迷惑をお掛けした。関係した皆様全員に感謝の意を表したい。

2013年10月

奥村次徳

1. 電子物性を学ぶための基礎的事項

1.1	電子の電荷
	1.1.1 電気素量と電子の電荷
	1.1.2 静電誘導とキャパシタ
	1.1.3 クーロンブロッケード 5
1.2	電子のエネルギー 7
	1.2.1 真空中の電子を動かす仮想実験 7
	1.2.2 電子のエネルギーを表す単位
	1.2.3 光子とエネルギー 10
1.3	熱エネルギー 14
	1.3.1 エネルギー等分配則と熱エネルギー
	1.3.2 ボルツマン因子
1.4	電子の半径
本章の	まとめ
理解	の確認

2. 真空中の電子の運動

2.1	電子に	:働く力と運動	л	 	 20
		運動方程式			
		電界による電			
2.2		這荷制限電流			
2.3	電子に	ニームの偏向		 	 26

	2.3.1 トムソンの実験	2
	2.3.2 静電偏向	2
	2.3.3 サイクロトロン運動	20
	2.3.4 磁界偏向	30
	2.3.5 電子の比電荷	3.
	本章のまとめ	3
	理解度の確認	32
国体	中の電子の運動(古典的取扱り)	
	3.1 ドリフト運動	34
	3.1.1 電子の散乱	34
	3.1.2 固体中の電子についての運動方程式	
	3.1.3 散乱の緩和時間と平均自由行程	
	3.1.4 キャリアの拡散	40
	3.2 電気抵抗率	43
	3.2.1 規格化されたオームの法則	43
	3.2.2 電気抵抗率による物質の分類	45
	3.2.3 電気抵抗率の温度依存性	47
	本章のまとめ	
		49

4.1.3 半導体中のドーパント不純物のイオン化エネルギー ……… 56

4.2 量子力]学への入口	58
4.2.1	粒子と波動の二重性	58
4.2.2	不確定性関係	60
4.2.3	雲のような電子	63
4.3 電子の	D磁気モーメント	65
4.3.1	軌道角運動量と磁気モーメント	65
4.3.2	電子のスピン	67
4.3.3	外部磁界の影響	69
4.3.4	量 子 数	72
本章のまとぬ	······	74
理解度の確認	g	74

5. 波動としての電子

5.1	シュレ	/ ディンガー方程式	76
	5.1.1	自由電子状態 ·····	76
	5.1.2	ハミルトン演算子と波動方程式	···· 78
5.2	電子の)閉込め	···· 79
	5.2.1	半導体の量子構造	···· 79
	5.2.2	シュレディンガー方程式を満たす関数	81
	5.2.3	量子井戸の電子状態	82
5.3	電子の)トンネル	85
	5.3.1	有限厚さのポテンシャル障壁	85
	5.3.2	電子波の透過と反射	87
本章	のまとめ)	91
理解	度の確認	g	91

6. 電子の統計的取扱/)

6.1	キャリ	ア密度の数え方 94
6.2	状態智	密度95
	6.2.1	周期境界条件
	6.2.2	k に対する状態密度(波のモードの数) · · · · 98
	6.2.3	E に対する状態密度
6.3	フェル	ミ・ディラックの分布関数 100
	6.3.1	パウリの排他律とフェルミ粒子
	6.3.2	フェルミ粒子の状態への配置の仕方 102
	6.3.3	電子占有関数と非占有関数 104
	6.3.4	フェルミ波数とフェルミエネルギー 106
	6.3.5	フェルミ分布と電気伝導 108
本章の	まとめ	
理解度	き の確認	

7. 結晶中の電子

7.1	周期ボ	プテンシャル ····· 112
	7.1.1	ポテンシャルのフーリエ展開
	7.1.2	結晶による電子波の回折 · · · · · · 114
	7.1.3	ブロッホ状態の電子
7.2	禁制带	fの発生
	7.2.1	空格子と自由電子の還元ゾーン表示 121
	7.2.2	自由電子に近い近似による取扱い · · · · · 123
	7.2.3	価電子によるバンドの占有 · · · · · 125
	7.2.4	金属と絶縁体 ・・・・・・・・128
7.3	半導	[体 ······ 131
	7.3.1	バンド端の放物線近似と有効質量 131
	7.3.2	半導体の電気伝導
	7.3.3	直接遷移型と間接遷移型のバンド構造 134

		<u> </u>	次	ix
理解度	の確認	 		· 136
l				
基本的な物理定数		 		137
引用・参考文献 ·····		 		· 138
理解度の確認;解認	兌	 		· 139
索 引		 		· 145

電子物性を学ぶための基礎的事項

古典的には、電子はマイナスの電荷をもった粒子として扱うことができる。本章では、まずこの枠組みの中で、電子の基本的な性質について考察する。電磁気学の基礎的な知識を使うだけで、クーロンブロッケードというナノメータの世界での面白い現象を垣間見ることができる。

電子を扱う学術分野や技術分野において、エネルギーの単位には [eV] (電子ボルト) が一般的に用いられている。この単位を使って、光の量子(光子、フォトン) のエネルギー、および熱エネルギーの大きさについて求めておく。この二つ物理量は、電子物性工学にとって極めて重要である。

1.1 電子の電荷

本章では、電子物性の議論に関連する基本的な物理定数の意味、パラメータの大きさ(オーダ)の感覚をつかんでいただきたい。電子物性工学は、電界や磁界などのさまざまな外力を与えたときに、電子がどのように振る舞うかを理解して、いろいろな応用分野に役立てることを目的としており、電子そのものについて直接その成立ちを調べる学問分野ではない。しかしながら、先ず、電子とは何かについて簡単に整理しておくことは意味がある。

1.1.1 電気素量と電子の電荷

「電気」には符号の異なる正・負の2種類があることはよく知られている。一般的に使われている「電気」という言葉は随分あいまいなものである。電荷が存在すればそのまわりには電気的な力の場ができ、これを積分したものが電圧(静電ポテンシャル)と関係する。また、電荷が動くと、それに伴って電流が流れることになる。

さて、この正・負の電荷は細分化していくと、それ以上分割できない最小の単位がある。 すなわち、電荷は連続量ではない。この最小の電荷量の大きさ(絶対値)は電気素量(elementary electric charge) q と呼ばれる。

$$q = 1.602 \times 10^{-19} \,\mathrm{C}$$
 (1.1)

電気素量は**素電荷**と呼ばれることもある。記号としてeが用いられることもあるが、電子の英語名である "electron" を連想して負の値として扱ったり、あるいは、この分野でエネルギーを表す単位として通常用いられる [eV] (電子ボルト) と区別しづらいこともあるため、本書ではq を用いることとする。

 占めている。これを、古典的な原子軌道として(ここでは 2s と 2p はひとまとめにして)描いたものが図1.1(a)である。内側から 2 番目までの原子軌道に着目すると、原子番号 10 のネオン(Ne)と同じ電子配置になっている。Ne と同じく周期表において 18 列目にある(Ⅷ族)元素は、電子配置が、いわゆる閉殻構造をとっており化学的に安定である。そこで、Na 原子は、Ne よりも 1 個陽子が多い閉殻構造をもつ+1 価のイオンだと、3s 状態(最外殻)にある電子 1 個から構成されていると見ることができる。

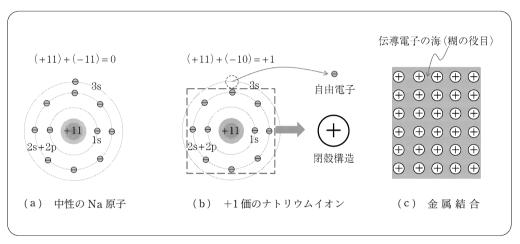


図1.1 ナトリウム原子における電気的中性とイオン化、そして金属結合

この Na 原子が数多く集まると、3s 状態の最外殻電子は、個々の原子に付随するのではなく、Na 原子の集団全体に共有されて固体の中を自由に動き回ることのできる伝導電子となる。プラスのイオン芯の隙間を、マイナスの伝導電子が埋め、ちょうど糊のような役割を果たすことで固体として凝集している。これは金属結合と呼ばれる。以上の説明から明らかなように、Na のような 1 価金属では、伝導電子密度は原子密度(イオン芯の密度)に等しい。したがって、均一な状態ではマクロに見ても電気的に中性である。

1.1.2 静電誘導とキャパシタ

次に、図1.2に示したように、1価金属で2枚の電極板をつくり、これらを平行に対向させた場合を考えてみよう。これは通常、平行平板キャパシタ(平行平板コンデンサ)と呼ばれるものであり、電極端の効果を無視すればその大きさC[F] は

$$C = \varepsilon \frac{S}{d} \tag{1.2}$$

で与えられる。ここで、 ε (F/m) は誘電率 (間隙が真空の場合 $\varepsilon = \varepsilon_0 = 8.854 \times 10^{-12} \, F/m)$

4 1. 電子物性を学ぶための基礎的事項

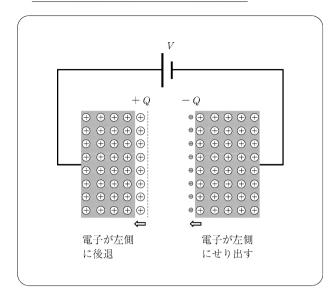


図1.2 1価金属の電極における誘導電荷

m, 誘電体の場合にはこれに比誘電率 ε_r を掛ける), d [m] は電極間隔, S $[m^2]$ は電極面積である。さて,この平行平板キャパシタの左側の電極がプラス,右側がマイナスになるように電圧を印加すると

$$Q = CV \tag{1.3}$$

に従って、それぞれの電極表面に +Q[C]、-Q[C] の電荷が静電的に誘導される。図 1.2 に示したように、プラス側電極表面の正電荷は、伝導電子が表面から若干後退すること で電気的な中性状態が崩れた結果現れたイオン芯のプラスであり、一方のマイナス側の負電荷は伝導電子そのものである。

[数値を見積もってみよう 1.1] 半導体メモリは情報記憶媒体として日常生活においても不可欠なものとなっている。例えば、DRAM と呼ばれるシリコン集積回路のメモリでは、キャパシタに蓄えられる電荷の有無で 1 ビットの情報を記憶している。メモリキャパシタは一種の平行平板キャパシタであるので、ここで 1 ビットの情報に相当する電荷量 Q と電子数 N_e を見積もっておこう。具体的寸法として、厚さ 2 nm の誘電体(SiO₂、比誘電率 $\varepsilon_r=3.9$)薄膜を、100 nm 角の電極で挟んだキャパシタに V=1 V の電圧をかけて電荷を充電した場合を考えてみると、式(1.2) および式(1.3) から

$$Q = CV = \left(\varepsilon_r \varepsilon_0 \frac{S}{d}\right) V = 3.9 \times 8.854 \times 10^{-12} \times \frac{(100 \times 10^{-9})^2}{2 \times 10^{-9}} \times 1 \cong 1.7 \times 10^{-16} \text{ (C)}$$

$$= \Re 170 \text{ (aC)}$$
(1.4)

という値が得られる † 。また、この電荷量を、電気素量(式(1.1))で除すことで電子数を見積もることができる。

[†] a【アト】:10⁻¹⁸のオーダを表すときに単位の前に付ける接頭語。

$$N_e = \frac{Q}{q} = \frac{1.7 \times 10^{-16}}{1.602 \times 10^{-19}} = \text{शs} \ \underline{1\ 100\ (\text{II})}$$
 (1.5)

1.1.3 (クーロンブロッケード

半導体デバイスを作製するための微細加工技術の進歩は著しく、いまや金属や半導体、絶縁体を用いてナノメータ (nm) オーダの構造を比較的容易につくることができるようになっている。また、ある種の分子がもつ性質に着目して、自己組織化と呼ばれる方法でもナノ構造を形成する試みが数多くなされている。こうして、[数値例1.1]([数値を見積もってみよう1.1]のこと。以下、参照する場合は、単に"数値例"と表記する)で扱ったよりも、さらに桁違いに小さなキャパシタの作製が可能になっている。ここでは、そうしたナノメータサイズの微小キャパシタにおける電子の振舞いについて考えてみることにする。

平行平板キャパシタの電極面に電荷が蓄えられると、それぞれの電極においては同種の電荷の間に働くクーロン斥力によって静電エネルギーが上昇することになる。電磁気学の教えるところによれば、この静電エネルギーは

$$E = \frac{1}{2}CV^2 = \frac{Q^2}{2C} \tag{1.6}$$

で与えられる。図1.3(a)に示すように,通常の寸法のキャパシタにおいては,電極に誘導された電子は,電極から電極へは絶縁体のギャップがあり,これを通り抜けて移動することはできない。ところが,キャパシタの大きさをどんどん小さくしていき電極間隔が nm のオーダまで狭くなると,後に5章で見るように,電子は,その波動性が顕著に現れる結果,量子力学的なトンネル効果によって片方の電極からもう片方へ容易に移動できるようになる(図(b))。1個の電子が電極間ギャップをトンネルして対向電極の正電荷を中和すると,電荷量は $Q \rightarrow (Q-q)$ に減少する。これに伴う,電子のトンネル前後の静電エネルギーの変化分を見積もると

$$\Delta E = E_2 - E_1 = \frac{(Q - q)^2}{2C} - \frac{Q^2}{2C} = -\frac{q}{2C}(2Q - q)$$
 (1.7)

となる。式(1.7)は電子のトンネルによるエネルギーの増加分を表しているので、この値が プラスになる条件

$$Q < \frac{q}{2} \tag{1.8}$$

すなわち、最初に蓄えられている電荷量 Q が q/2 よりも小さいときには、電子がトンネルしてしまうとエネルギーが増加することになる。物理現象では、エネルギーが増大する方向への変化は自然には進まないので、式(1.8)の条件では電子のトンネルは阻止され電流は流

6 1. 電子物性を学ぶための基礎的事項

図 1.3 クーロンブロッケード

れない。電子間に働くクーロン斥力によって、nm オーダのスケールにおいて電子の流れが 阻止されるこの現象は、クーロンブロッケード (Coulomb brockade) と呼ばれる。式 (1.3)を使って、式(1.8)の条件をキャパシタに印加する電圧に変換すると

$$V < \frac{q}{2C} \tag{1.9}$$

となる。一方,印加電圧を増加させていき V>q/2C となると,電子 1 個をトンネルさせて電荷量 q だけ中和したほうがエネルギー的に得をすることになり,ここでトンネルが起こり電流が流れる。図 1.3(c) に nm サイズの微小キャパシタの電流-電圧特性を示す。

[数値を見積もってみよう 1.2] トンネル電流が流れ始めるしきい値電圧 V=q/2C の値を,具体的に見積もってみよう。例えば,電極の大きさを $10~\mathrm{nm}$ 角,電極間隔を $1~\mathrm{nm}$,間隙は真空と $10~\mathrm{nm}$ 付

$$V = \frac{q}{2C} = \frac{1.602 \times 10^{-19}}{2 \times (8.854 \times 10^{-12} \times 10^{-8} \times 10^{-8}/10^{-9})} \cong 0.091 \,(\text{V}) = 91 \,(\text{mV})$$
 (1.10)

【あ】	確率振幅78	光量子10
[65]	可視光 ······13	光量子仮説 ······10
アインシュタインの関係42	価電子帯 ······133	古典的電子半径 ······18
アクセプタ不純物56	還元ゾーン表示 <i>123</i>	固有関数 ······78
アボガドロ数15	間接遷移型134	[ð]
アルカリ金属 ·····127	緩和時間(散乱の)37,39	
アルカリ土類金属 ······130	【き】	サイクロトロン運動29
[w]		サイクロトロン周波数30
White the co	規格化の条件84	サイクロトロン半径30
位相速度	気体定数 ·······15	歳差運動71
1 次元電子気体80	基底状態84	散乱(熱振動(フォノン)に
一般化運動量	軌道角運動量65	よる) ···········48
一般化座標 ······54 移動度 ·····38	基本ベクトル114 逆格子ベクトル114,115	散乱頻度40
		散乱(不純物による) <i>48</i>
陰極管 CRT26	ギャップエネルギー125	[L]
【う】	キャリア ·······················36 共鳴トンネル接合 ·········92	 磁界偏向 ·······30
上向き ······73	共鳴トンネルダイオード87	磁気角運動量比66
運動量演算子 ·······75	局在 (電子の)62	磁気モーメント66
	禁制帯125,133	磁気量子数71
【え】	禁制帯幅13,49,125	T向き ······················73
衛星モデル (原子の) ······52	金属45,129	進 蔽49
エサキダイオード87	金属結合3	周期11
エネルギーギャップ	正海和日	周期(的)境界条件 ·····96
エネルギーギャップ 13 , 125 , 133	[<]	周期(的)境界条件96 周期ポテンシャル113
エネルギーギャップ 13 , 125 , 133 エネルギー固有値78	【 〈 】 空間周波数 ·······12	周期(的)境界条件 ······96 周期ポテンシャル ······113 自由電子状態 ·····76
エネルギーギャップ 13 , 125 , 133	【 〈 】 空間周波数	周期(的)境界条件 96 周期ポテンシャル 113 自由電子状態 76 自由電子に近い近似 123
エネルギーギャップ 13 , 125 , 133 エネルギー固有値78 エネルギー等分配則(熱振動) 34	【 〈 】 空間周波数 ····················12 空間電荷制限電流 ·········25 空格子 ·············122	周期(的)境界条件96 周期ポテンシャル113 自由電子状態76 自由電子に近い近似123 周波数12
エネルギーギャップ 13 , 125 , 133 エネルギー固有値78 エネルギー等分配則(熱振動)	【 〈 】 空間周波数	周期(的)境界条件 96 周期ポテンシャル 113 自由電子状態 76 自由電子に近い近似 123
エネルギーギャップ	【 〈 】 空間周波数	周期(的)境界条件 96 周期ポテンシャル 113 自由電子状態 76 自由電子に近い近似 123 周波数 12 充満帯 128 主量子数 67
エネルギーギャップ	【く】 空間周波数	周期(的)境界条件 96 周期ポテンシャル 113 自由電子状態 76 自由電子に近い近似 123 周波数 12 充満帯 128
エネルギーギャップ	【く】 空間周波数	周期(的)境界条件
エネルギーギャップ	【く】 空間周波数	周期(的)境界条件 96 周期ポテンシャル 113 自由電子状態 76 自由電子状態 123 周波数 12 充満帯 128 主量子数 67 シュレディンガー方程式 78 状態密度 94 状態密度関数 (E に対する) 100 状態密度関数 (k に対する) 99 シリコン 128 真性キャリア密度 16,49
エネルギーギャップ	【く】 空間周波数	周期(的)境界条件
エネルギーギャップ	【く】 空間周波数	周期(的)境界条件 96 周期ポテンシャル 113 自由電子状態 76 自由電子状態 123 周波数 12 充満帯 128 主量子数 67 シュレディンガー方程式 78 状態密度 94 状態密度関数 (E に対する) 100 状態密度関数 (k に対する) 99 シリコン 128 真性キャリア密度 16,49
エネルギーギャップ	【く】 空間周波数	周期(的)境界条件
エネルギーギャップ	【く】 空間周波数	周期(的)境界条件 96 周期ポテンシャル 113 自由電子状態 76 自由電子に近い近似 123 周波数 12 充満帯 128 主量子数 67 シュレディンガー方程式 78 状態密度 94 状態密度関数 (E に対する) 100 状態密度関数 (k に対する) 99 シリコン 128 真性キャリア密度 16,49 真性半導体 49 真性フェルミ準位 18 振動数 12
エネルギーギャップ	【く】 空間周波数	周期(的)境界条件 96 周期ポテンシャル 113 自由電子状態 76 自由電子状態 128 同波数 12 充満帯 128 主量子数 67 シュレディンガー方程式 78 状態密度 94 状態密度関数 (E に対する) 100 状態密度関数 (k に対する) 99 シリコン 128 真性キャリア密度 16,49 真性半導体 49 真性フェルミ準位 18 振動数 12 【す】 水素原子モデル 52
エネルギーギャップ	【く】 空間周波数	周期(的)境界条件 96 周期ポテンシャル 113 自由電子状態 76 自由電子に近い近似 123 周波数 12 充満帯 128 主量子数 67 シュレディンガー方程式 78 状態密度 94 状態密度関数 (E に対する) 100 状態密度関数 (k に対する) 99 シリコン 128 真性キャリア密度 16,49 真性半導体 49 真性フェルミ準位 18 振動数 12

スピン角運動量68	透過率88	[3,]
スピン-軌道相互作用 <i>72</i>	導体45,129	
スピン量子数68	導電率44	フィックの法則42
[世]	ドナー準位58	フェルミエネルギー …104,107
161	ドナー不純物 ······56	フェルミ温度107
正 孔36	ド・ブロイの関係式59	フェルミ準位104,128
静電偏向 ······28	トムソンの実験 ······26	フェルミ速度48,108
静電ポテンシャル9	ドリフト移動度38	フェルミ・ディラックの分布
絶縁体46,130	ドリフト運動36	関数103,104
前進波83	ドリフト速度38	フェルミ波数106
【そ】	トンネル確率89	フェルミ面106
	トンネル効果5,87	フェルミ粒子102
走査型電子顕微鏡21	トンネルダイオード87	フォトン10
走査 (電子ビームの) ·······26	[(=]	不確定性関係60,71
走査トンネル顕微鏡87		不確定性原理60
素電荷2	2 次元電子気体80	不純物ドーパント46
【た】	二重へテロ接合構造81 入射波83	物質波59
 第1ブリルアンゾーン ······ <i>123</i>	人射波 ·······83 ニールス・ボーア ······53	ブラウン管 ·······26 ブラッグ回折(電子波の)···124
第179ルアンケーン ······123 対応関係 ······59		ブラック回折(電子板の)… <i>124</i> ブラッグの回折条件 <i>116</i>
弹道性伝導 ······25	【ね】	ブラッグの回折則116
	 熱運動速度	プランク定数110
【ち】	熱運動 (電子の)34	フーリエ変換の縮尺性 ······· <i>61</i>
チャイルド・ラングミュアの	熱エネルギー16	ブロッホ状態119
法則26	熱電圧17	ブロッホの定理119
超伝導体46	熱電子放出	分散関係63.121
超電導体46	粘性抵抗(力)36	分散関係(価電子帯の)131
超電導体 ·······46 調和振動子 ·····34	粘性抵抗 (力)36	分散関係(価電子帯の)131 分散関係(結晶中の電子の)
超電導体	粘性抵抗 (力)36 【は】	分散関係(価電子帯の) ·····131 分散関係(結晶中の電子の) ······124
調和振動子34 直接遷移型134	【は】 パイエルス不安定性 <i>136</i>	分散関係 (結晶中の電子の)
調和振動子34 直接遷移型134 【て】	【は】 パイエルス不安定性 <i>136</i> ハイゼンベルグ <i>60</i>	分散関係 (結晶中の電子の)
調和振動子34 直接遷移型134 【て】 ディラック定数55,67	【は】 パイエルス不安定性136 ハイゼンベルグ60 パウリの禁制則102	分散関係(結晶中の電子の)
調和振動子34 直接遷移型134 【 て 】 ディラック定数55,67 ディラックの h55	【は】 パイエルス不安定性136 ハイゼンベルグ60 パウリの禁制則102 パウリの排他原理102	分散関係 (結晶中の電子の) 724 分散関係 (自由電子の)77 分散関係 (電磁波・光の) 78,134 分散関係 (伝導帯の)131
調和振動子	【は】 パイエルス不安定性136 ハイゼンベルグ60 パウリの禁制則102 パウリの排他原理102 パウリの排他原理102	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2	【は】 パイエルス不安定性136 ハイゼンベルグ …60 パウリの禁制則102 パウリの排他原理 102 パウリの排他庫 …102 波 数12	分散関係 (結晶中の電子の) 724 分散関係 (自由電子の)77 分散関係 (電磁波・光の) 78,134 分散関係 (伝導帯の)131
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44	【は】 パイエルス不安定性136 ハイゼンベルグ60 パウリの禁制則 …102 パウリの排他原理 …102 パウリの排他律102 波 数12 波数ベクトル12	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気伝導率 44	【は】 パイエルス不安定性136 ハイゼンベルグ …60 パウリの禁制則 …102 パウリの排他原理 …102 パウリの排他律102 波 数12 波数ベクトル12 波 束63	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気伝導率 44 電子エネルギー 9	【は】 パイエルス不安定性136 ハイゼンベルグ60 パウリの禁制則 102 パウリの排他原理 102 パウリの排他 102 波数12 波数ベクトル12 波 束63 波 長11	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気伝導率 44 電子エネルギー 9 電子スピン共鳴 70	【は】 パイエルス不安定性 … 136 ハイゼンベルグ … 60 パウリの禁制則 … 102 パウリの排他原理 … 102 パウリの排他	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気伝導率 44 電子エネルギー 9 電子スピン共鳴 70 電子占有関数 94,106	【は】 パイエルス不安定性 … 136 ハイゼンベルグ … 60 パウリの禁制則 … 102 パウリの排他原理 … 102 パウリの排他律 … 102 波 数 12 波数ベクトル … 12 波 束 … 63 波 長 … 11 発光過程 … 135 発光ダイオード … 13	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気伝導率 44 電子エネルギー 9 電子スピン共鳴 70 電子占有関数 94,106 電子の g 因子 68	【は】 パイエルス不安定性	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気伝導率 44 電子エネルギー 9 電子スピン共鳴 70 電子占有関数 94,106 電子の g 因子 68 電子の散乱 35	【は】 パイエルス不安定性	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気伝導率 44 電子エネルギー 9 電子スピン共鳴 70 電子占有関数 94,106 電子の g 因子 68 電子の散乱 35 電子の質量(相対論的効果) 22	【は】 パイエルス不安定性 136 ハイゼンベルグ 60 パウリの禁制則 102 パウリの排他原理 102 パウリの排他 102 波 数 12 波数ベクトル 12 波 東 63 波 長 11 発光過程 135 発光ダイオード 13 波動関数 78 波動方程式 78 ハミルトン演算子 78	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気伝導率 44 電子エネルギー 9 電子スピン共鳴 70 電子占有関数 94,106 電子の g 因子 68 電子の散乱 35	【は】 パイエルス不安定性 136 ハイゼンベルグ 60 パウリの禁制則 102 パウリの排他原理 102 パウリの排他律 102 波 数 12 波数ベクトル 12 波 東 63 波 長 11 発光過程 135 発光ダイオード 13 波動関数 78 波動方程式 78 ハミルトン演算子 78 半金属 46	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電子エネルギー 9 電子スピン共鳴 70 電子占有関数 94,106 電子の g 因子 68 電子の散乱 35 電子の散乱 35 電子の費量(相対論的効果) 22 電子の静止質量 20 電子の比電荷 31	【は】 パイエルス不安定性 136 ハイゼンベルグ 60 パウリの禁制則 102 パウリの排他原理 102 パウリの排他 102 波 数 12 波数ベクトル 12 波 東 63 波 長 11 発光過程 135 発光ダイオード 13 波動関数 78 波動方程式 78 ハミルトン演算子 78	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気伝導率 44 電子エネルギー 9 電子スピン共鳴 70 電子占有関数 94,106 電子の g 因子 68 電子の散乱 35 電子の質量(相対論的効果) 22 電子の静止質量 20	【は】 パイエルス不安定性 136 ハイゼンベルグ 60 パウリの禁制則 102 パウリの排他原理 102 パウリの排他律 102 波 数 12 波 数 12 波 束 63 波 長 11 発光過程 135 発光ダイオード 13 波動関数 78 波動方程式 78 ハミルトン演算子 78 半金属 46 反射係数(トンネル障壁に	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気伝導率 44 電子エネルギー 9 電子スピン共鳴 70 電子占有関数 94,106 電子の g 因子 68 電子の散乱 35 電子の散乱 35 電子の静止質量 20 電子の比電荷 31 電子非占有関数 106	【は】 パイエルス不安定性 136 ハイゼンベルグ 60 パウリの禁制則 102 パウリの排他原理 102 パウリの排他律 102 波 数 12 波 数 12 波 束 63 波 長 13 発光過程 135 発光ダイオード 13 波動関数 78 波動方程式 78 ハミルトン演算子 78 半金属 46 反射係数 (トンネル障壁に よる) 88	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気伝導率 44 電子エネルギー 9 電子占有関数 94,106 電子の g 因子 68 電子の散乱 35 電子の散乱 35 電子の散乱 35 電子の散乱 35 電子の背上質量 20 電子の比電荷 31 電子非占有関数 106 電子ボルト 8	【は】 パイエルス不安定性 136 ハイゼンベルグ 60 パウリの禁制則 102 パウリの排他原理 102 パウリの排他律 102 波 数 12 波 数 12 波 東 63 波 長 11 発光過程 13 発光ダイオード 13 波動関数 78 次シアイオード 13 波動関数 78 次シアイオード 78 次シアイオート 78	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気云導率 44 電テスピン共鳴 70 電子ムピン共鳴 70 電子占有関数 94,106 電子の g 因子 68 電子の散乱 35 電子の散乱 35 電子の散乱 35 電子の散乱 35 電子の散乱 35 電子の散乱 35 電子の散乱 35	【は】 パイエルス不安定性136 ハイゼンベルグ60 パウリの禁制則102 パウリの排他原理102 パウリの排他庫102 波数ベクトル12 波数ベクトル12 波 束63 波 長11 発光過程135 発光ダイオード13 波動関数78 波動方程式78 ルミルトン演算子78 半金属46 反射係数(トンネル障壁に よる)88 反射波83 半導体46,131 半導体量子構造79	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気云・ルギー 9 電子スピン共鳴 70 電子占有関数 94,106 電子の g 因子 68 電子の散乱 35 電子の散乱 35 電子の質量 相対論的効果) 22 電子の批電荷 31 電子非占有関数 106 電子ボルト 8 伝導帯 133 伝導電子 36	【は】 パイエルス不安定性 136 ハイゼンベルグ 60 パウリの禁制則 102 パウリの排他原理 102 パウリの排他律 102 波 数 12 波 数 12 波 束 63 波 長 11 発光過程 13 発光ダイオード 13 波動関数 78 次シルトン演算子 78 中金属 46 反射係数(トンネル障壁に よる) 88 反射波 83 半導体 46,131 半導体量子構造 79	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気伝導率 44 電子エネルギー 9 電子占有関数 94,106 電子の g 因子 68 電子の散乱 35 電子の散乱 35 電子の散乱 35 電子の散乱 35 電子の世電荷 31 電子非占有関数 106 電子非占有関数 106 電子ボルト 8 伝導帯 133 伝導電子 36 【と】 透過型電子顕微鏡 21	【は】 パイエルス不安定性 136 ハイゼンベルグ 60 パウリの禁制則 102 パウリの排他原理 102 パウリの排他	分散関係 (結晶中の電子の)
調和振動子 34 直接遷移型 134 【て】 ディラック定数 55,67 ディラックの h 55 電界放出 21 電気素量 2 電気抵抗率 44 電気云・ルギー 9 電子スピン共鳴 70 電子占有関数 94,106 電子の g 因子 68 電子の散乱 35 電子の散乱 35 電子の質量 相対論的効果) 22 電子の批電荷 31 電子非占有関数 106 電子ボルト 8 伝導帯 133 伝導電子 36	【は】 パイエルス不安定性 136 ハイゼンベルグ 60 パウリの禁制則 102 パウリの排他原理 102 パウリの排他律 102 波 数 12 波 数 12 波 束 63 波 長 11 発光過程 13 発光ダイオード 13 波動関数 78 次シルトン演算子 78 中金属 46 反射係数(トンネル障壁に よる) 88 反射波 83 半導体 46,131 半導体量子構造 79	分散関係 (結晶中の電子の)

ボーズ粒子 102 ポテンシャル勾配 9 ボルツマン因子 16 ボルツマン関数 105 ボルツマン近似 105 ボルツマン定数 15 【ゆ】 有効質量 37,57,131 有効質量近似 58 有効質量テンソル 133 有効質量比 57	有効状態密度(価電子帯の)143 有効状態密度(伝導帯の)…143 誘電緩和時間39 【よ】 陽 子2 【ら】 ラグランジュの未定係数法 104 【り】 理想気体の状態方程式15	粒子束 41 粒子と波動の二重性 58 量子井戸 80 量子細線 80 量子数 72 量子ドット 80 【れ】 励起状態 84 【ろ】 ローレンツカ 20
[D]	(L)	(S)
DH 構造 ·······81	LED13	SEM21

—— 著者略歴 ——

奥村 次徳 (おくむら つぐのり)

1978 年 東京大学大学院博士課程修了(電子工学専攻) 工学博士(東京大学)

現在,首都大学東京教授

電子物性工学

Electronic Properties of Materials

© 一般社団法人 電子情報通信学会 2013

2013年12月25日 初版第1刷発行

著

検印省略

編 者 一般社団法人

電子情報通信学会 http://www.ieice.org/

者 奥 村 次 徳

発行者 株式会社 コロナ社

代表者 牛来真也

112-0011 東京都文京区千石 4-46-10

発行所 株式会社 コ ロ ナ 社

CORONA PUBLISHING CO., LTD.

Tokyo Japan Printed in Japan 振替 00140-8-14844・電話(03)3941-3131(代)

http://www.coronasha.co.jp

ISBN 978-4-339-01850-9

印刷:壮光舎印刷/製本:グリーン

本書のコピー、スキャン、デジタル化等の 無断複製・転載は著作権法上での例外を除 き禁じられております。購入者以外の第三 者による本書の電子データ化及び電子書籍 化は、いかなる場合も認めておりません。

落丁・乱丁本はお取替えいたします