まえがき

アンテナの小形化という問題は、マルコーニが1901年に大西洋横断の無線通信に成功して以来、研究・検討が続けられている古くて新しい課題である。 小形アンテナとは何を指すのか。まず、その語感が示すイメージとこれから述べる小形アンテナの定義とを区別して認識しておく必要がある。

まず実際の大きさによる分類が考えられる。物理的な寸法をもって小形か否かを判断することは当然のことであろう。

例えば、ミリ波アンテナは手の平程度の大きさであり、物理的な寸法(長さ)が小さいという理由で、アンテナは小形であるということができる。これに対して、マルコーニが用いたアンテナは、建物より十分に大きなアンテナである。実際に、このアンテナは高さが 48 m の 2 本のマストを 60 m 離して配置し、そのマストの間に支持用の水平ワイヤを張り、扇状にワイヤを支持する構造となっており、物理的な寸法としては小形とはいえない。

しかしながら、アンテナの動作は使用波長に対する電気的寸法に依存するのであって、みための寸法ではない。その意味で、ミリ波ホーンアンテナのように開口長が使用波長よりも大きい場合、たとえ物理的に小さいとはいっても小形アンテナに分類することはできない。また、マルコーニのアンテナの場合、その使用波長の1/10程度であるため、電気的には小形アンテナと分類してもよいだろう。この他にも小形アンテナを分類する方法がいくつか知られている。小形アンテナの定義・分類については本書の2章で詳述する。

小形アンテナには二つの主要な課題があると考えられる。その一つは、小形アンテナの特性に関する研究として、もう一つは、小形アンテナ、特に電気的な小形アンテナを実現するための手法に関する研究として展開される。前者は、おもに電気的な小形アンテナの本質的な特性に関するものであり、多くの

研究者によって長い間研究されてきた。

それらの中で、小形アンテナの限界が最も関心の高い課題であるとともに依然重要な問題として残っている。この問題は、直接、高利得あるいは広帯域な小形アンテナをいかに実現するかに関連する。小形アンテナの物理的限界は、はじめ Wheeler によって、つぎに Chu によってそれぞれ 1947 年と 1948 年に議論された。以来、小形アンテナの問題は多くの研究者の間で、特に物理的限界と結びつけてアンテナのQ値、利得、帯域幅および効率に関して議論されてきた。

一方,実際に用いる小形アンテナを実現するために,さまざまな努力が現在 においても引き続き行われており,これはまた,同時に物理的限界にできるだ け近づけた特性を有する小形アンテナに関連する。

ここで、アンテナを小形化する手法について考えてみよう。アンテナの種類を問わず、小形化する手法は、大別して電流経路の変更、材料の装荷、整合回路の付加ということができる。電流経路の変更では、共振経路長を変えずに電流経路を変更することで小形化を図る。共振経路長を保つことは、入力インピーダンスの虚部を0とすることと等価である。材料の装荷では、材料内で波長が短縮されることを利用して小形化を実現する。整合回路の付加では、文字通り整合回路を付加することに加えて、短絡ピン、スタブ、インピーダンス装荷という手法により電流分布を制御することを含む。

近年,移動通信分野において小形アンテナの要求は緊急的である。この分野では、携帯電話のような移動端末の数が爆発的に増加している。移動端末用アンテナは小形であるだけではなく、端末機器内に組み込まれて、しかもいままでの場合よりも同等以上の性能を有することが要求される。実際に、利得と帯域幅は、アンテナ寸法が変わってもまったく同じになるように維持されなければならない。また、端末によっては多周波あるいは広帯域動作に対応できることが要求され、それに用いるアンテナも同様である。これらの要求は、データ、ビデオ信号およびコントロール信号の伝送に適用される、多様な無線システムにおいて展開されてきている。

その代表例として、屋外ネットワークのみならず屋内を含む無線 LAN システムやデジタルテレビ放送があげられる。それらには小形、広帯域でしかも高利得を有するアンテナが要求される。その要求は、屋内アンテナ、屋外アンテナだけではなく、車両用アンテナについてもできるだけ小形・軽量でなければならない。また、ダイバーシチあるいは適応制御機能は車両用アンテナに対して必然的である。

さまざまなタイプの小形アンテナがいままで開発されてきた。平板で低姿勢なアンテナが代表的である。実用的な例が、平板逆 F アンテナ (PIFA)、パッチアンテナおよびマイクロストリップアンテナ (MSA) である。一方、線状アンテナの例がノーマルモードへリカルアンテナ (NMHA)、メアンダラインアンテナ (MLA)、逆 L アンテナ (ILA) などである。

フェライトおよび誘電体のような材料は、アンテナの寸法を小さくするために用いられる。セラミックチップアンテナ(CCA)およびフェライトコイルアンテナが実例である。それらの中では、極小セラミックチップアンテナが、1.5 GHz 帯の小型移動端末への応用として、数ミリ平方の大きさで作られている。それは、現在の最新技術によって生産される小型移動端末用として用いられる。物理的に最も小形なアンテナと考えられる。

本書では、小形アンテナの基本事項、解析法、応用例などを、小形アンテナを学ぶ初心者に対してわかりやすく解説している。1章では、アンテナ特性解析を行うときに便利なアンテナの基礎理論について解説する。2章では、アンテナの小形化の基礎として、基本的なモノポールアンテナおよび板状系アンテナの小形化について述べ、小形化手法とその影響について解説し、手法に関連して小形アンテナの定義・分類を行う。3章では、携帯電話の実用アンテナとして代表的な逆Fアンテナを取り上げ、その小形化について述べる。4章では、小形アンテナの測定について述べる。内容としては、測定時に考慮すべき事項、平衡・不平衡変換、近接導体の影響、放射効率の測定および光ケーブルを用いた測定法などである。5章では小形アンテナの設計事例について紹介する。人体の影響を軽減することを目的にした携帯端末用平衡給電型アンテナを

取り上げ、小形化などの設計概念に基づいたアンテナの発展型を提示・解析するとともに、解析に用いた電磁界シミュレータを比較検討する。その際、人体モデルを含めた解析結果も示す。6 章は、最近の小形アンテナの動向としてRFID(radio frequency identification)と EBG(electromagnetic band-gap structure)構造を含むメタマテリアルについて紹介する。

本書は、電子情報通信学会アンテナ・伝播第2種研究会のワークショップ(第32回)の内容を基本としており、そのときの実行委員会の皆様には大変感謝致します。また、日頃からご助言を頂いてきました筑波大学名誉教授の藤本京平先生、平沢一紘先生、防衛大学校教授の山田吉英先生に深謝致します。本書の出版にあたって、お世話になった新潟大学石井望准教授とコロナ社に感謝の意を表します。最後に、図の作成、校正などさまざまな面で協力してくれた研究室の学生に謝意を表します。

2011年3月

森下 久

目 次

1章 理 論

1.1		······1
1.2	マックスウェルの)方程式6
1.3	複素電磁界…	8
1.4	境 界 条 件…	9
1.5	ベクトルポテンシ	ノャルとスカラポテンシャル10
1.6	遠方電磁界とポラ	テンシャルベクトル12
1.7	微小ダイポールフ	アンテナと微小ループアンテナ14
1.8	イメージ理論・	18
1.9	指向性と利得…	20
1.10	共振と帯域幅	23
		2章 小形アンテナの基礎
2.1	小形アンテナの気	E義と分類······-26
		E義と分類26 テナの小形化28
2.2	モノポールアンラ	
2.2	モノポールアンラ 2.1 逆 L	- - ナの小形化28
2.2	モノポールアンラ 2.1 逆 L ½ 2.2 逆 F ½	- ナの小形化28 型30
2.2	モノポールアンラ 2.1 逆 L ½ 2.2 逆 F ½ 2.3 ヘリカル½	テナの小形化
2.2 2.2 2.2 2.2 2.2	モノポールアンラ 2.1 逆 L 2 2.2 逆 F 2 2.3 ヘリカル2 2.4 材料装	テナの小形化
2.2 2.2 2.2 2.2 2.2	モノポールアンラ 2.1 逆 L d 2.2 逆 F d 2.3 ヘリカル d 2.4 材 料 装 d 2.5 トップローデ	テナの小形化
2.2 2.2 2.2 2.2 2.2 2.2 2.2	モノポールアンラ 2.1 逆 L d 2.2 逆 F d 2.3 ヘリカル d 2.4 材 料 装 d 2.5 トップローデ 2.6 整 合 付 d 2.7 インピーダン	デナの小形化 28型 30型 31型 31
2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.3	モノポールアンラ 2.1 逆 L 3 2.2 逆 F 3 2.3 ヘリカル 2.4 材 料 装 4 2.5 トップローデ 2.6 整 合 付 ラ 2.7 インピーダン	デナの小形化 28型 30型 31型 31型 33 ボー 34 ボー 35 ボー 35 ボル 35 ス装荷 35
2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.3	モノポールアンラ 2.1 逆 L 3 2.2 逆 F 3 2.3 ヘリカル 2.4 材 料 装 4 2.5 トップローデ 2.6 整 合 付 ラ 2.7 インピーダン	デナの小形化 28型 30型 31型 31

	vi _	目	次		
	2.4.2	入力インピータ	^デ ンス 		·41
	2.4.3	帯域幅	ਜ਼ੂ 		·42
	2.4.4	アンテナの Q値	直•		·43
	2.4.5	放射パターン	· ······		·43
	2.4.6	電気的体積	± ••••••••••••••••••••••••••••••••••••		-44
2	.5 小케	8化手法とその	影響		-44
2	.6 小刑	杉アンテナの具	体例		48
2	.7 小号	形化の限界…			·48
2	.8 広	带域化手法…			-50
		3 1	章 小形アン	vテナの実現手法	
3	.1 逆1				
	3.1.1				
	3.1.2				
	3.1.3				
3					
	3.2.1			3方法	
	3.2.2			3方法	
3	.3 材料				
	3.3.1				
	3.3.2				
3	.4 整				
	3.4.1				
	3.4.2			秦子)	
	3.4.3			秦子)	
3	.5 グラ				
	3.5.1			ニズム	
	3.5.2				
	3.5.3	筐体上の電流採	[]制[•69

4章 小形アンテナの測定

4.1 測定時における注意事項	0'
4.2 同軸ケーブルを用いた測定	′3
4.2.1 不平衡給電型アンテナの測定	73
4.2.2 平衡給電型アンテナの測定	74
4.3 小型発振器による測定	'6
4.4 光ファイバを用いた測定法	7
4.4.1 光ファイバを利用する利点	77
4.4.2 放射特性測定	78
4.4.3 インピーダンス測定	32
4.5 放射効率の測定法	35
4.5.1 パターン積分法	35
4.5.2 Wheeler cap 法	37
4.5.3 Qファクタ法····································	39
4.5.4 ランダムフィールド法····································	90
4.6 複素アンテナパターンの測定法	1
5章 携帯端末用小形アンテナの設計事例	
5.1 設 計 概 念9)3
5.2 平衡給電型折返しループアンテナ9	96
5.2.1 平衡給電型アンテナ	96
5.2.2 折返しダイポールアンテナのステップアップ比··································	98
5.2.3 折返しダイポールアンテナの自己平衡作用10)1
5.2.4 折返しループアンテナの構造10)3
5.2.5 電磁界シミュレータによる解析10	
5.2.6 電流分布特性)5
5.2.6 電流分布特性10	

viii					次								
5.2.8	放 射	特	性	•••••						•••••			112
5.3 人1	体近傍時(にお	けるュ	戸衡 糸	合電型打	斤返し	_ルー	ープフ	アンテ	ナの特	寺性・・		114
5.3.1	アンテナ	- と人	、体モ [、]	デルの)構成…	•••••	•••••	•••••	•••••	•••••		•••••	115
5.3.2	電 流	分	布	•••••		•••••	•••••		•••••	•••••		•••••	116
5.3.3	放 射	特	性	•••••		•••••			•••••	•••••		•••••	117
5.4 L =	字型折返し	しモ	ノポー	-ルフ	ノンテナ		•••••		•••••	•••••		•••••	119
5.4.1	アンテナ	- の構	违…	•••••		•••••		•••••	•••••	•••••		•••••	121
5.4.2	入力イン	ピー	ダン	ス特性	ŧ	•••••	•••••		•••••	•••••		•••••	122
5.4.3	放 射	特	性	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••	123
5.4.4	構造パラ	メー	タの	食討 お	るよび特	性解	析	••••	•••••	•••••	•••••	•••••	124
5.4.5	PIFA 20	の比輔	咬を考	慮し	た LFM	Aの特	寺性・・		•••••	•••••	•••••	•••••	····126
5.4.6	アンテナ	- の小	形化	の定量	量的評価	ĵ	•••••	•••••	•••••	•••••	•••••	•••••	134
5.4.7	まと		め	•••••		•••••	•••••	•••••		•••••		•••••	136
		6	÷	告7년	の小	いつ			の新り	á			
		0.	早	取火	_v_,	リシア	ノフ	アフ	Ⅵ判	μJ			
6.1 RF	ID 用小形					-				-			138
6.1 RF 6.1.1	ID 用小形 RFID の	をアン	ノテナ										
		シアン 概	· / テナ 要····									•••••	····138
6.1.1	$\operatorname{RFID} \mathcal{O}$	ジアン概	/テナ 要	要電気	气定数…						•••••		····138 ····141
6.1.1 6.1.2	RFID の 小形アン	ジアン 概 テンテ	ノテナ 要… つの主!	要電気 実例・	 〔完数···								138 141 143
6.1.1 6.1.2 6.1.3 6.1.4	RFID の 小形アン 超小形ア	ジャップ 概 テンプン	ノテナ 要…・ の主・ ナの・	要電気 実例・ まめな	元定数…	·····································							····138 ····141 ····-143 ····149
6.1.1 6.1.2 6.1.3 6.1.4	RFID の 小形アン 超小形ア 超小形ア	シーグ 概 テンシアル	ノテナ 要… の主 ナの ナの を用い	要電気 実例・ さった	元定数	が上。 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 小形亻						138 141 143 149 155
6.1.1 6.1.2 6.1.3 6.1.4 6.2 ×	RFID の 小形アン 超小形ア 超小形ア 超小形ア	ど 概 テンン ア め	ノテナ 要… ・ナの ・ナの ・ナの に…	要電気 実例・ さらな	元定数 なる小形 アンテっ	が比… トのノ	 小形亻	上技術	ή·····				138141143149155
6.1.1 6.1.2 6.1.3 6.1.4 6.2 × 6.2.1	RFID の 小形アン 超小形ア 超小形ア タマテリ は じ	ジャ 概 ナ テ テ ル コープ は カーフ か コープ か コープ か コー	ノテナ 要…・ ・ナの主・ ・ナの に…・ に…・ に、 ドを用い に、 を用い に、 を用い に、 を用い に、 を た。 た。 た。 た。 た。 た。 た。 た。 た。 た。 た。 た。 た。	要電気 実例・・ さらな いた、	式定数 なる小形 アンテっ	が化… トの小		比技術	ij				138 141 143 149 155 156
6.1.1 6.1.2 6.1.3 6.1.4 6.2 × 6.2.1 6.2.2	RFID の 小形アン 超小形ア 超小形ア タマテリ、 は じ EBG グラ	グアン 概 テナ・ンア め l	/ テナ 要… - テの主 - ナの を用い に… ドを用 ectric	要要要をさたた人	元定数 なる小形 アンテゥ アンテゥ	が化… トのハ トの小	 小形イ 、形化	 と技術 ンテ	竹 ナの小	形化・			138 141 143 149 155 156 160
6.1.1 6.1.2 6.1.3 6.1.4 6.2 × 6.2.1 6.2.2 6.2.3	RFID の 小形アン 超小形ア 超小形ア タマテリ は じ EBG グラ Magneto	ジアン 概 ・・ンテ アル め ラン iel (LH)	/ テナ 要… の主! ・ ナの ・ ナの に… ドを用 ectric 材料	要実実さいを 大	式定数 よる小形 アンテラ アンテラ 工材料を	が化… トのハー トの小ー トのオン トのオン トアナ	小形化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		竹 ナの小	形化・			138 141 143 155 156 160
6.1.1 6.1.2 6.1.3 6.1.4 6.2 × 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	RFID の 小形アン 超小形ア タマテリ は じ EBG グラ Magneto 左手系 (DNG 材料	ジアス 概 ナンテア め フラ Diel (LH)	ノテナ 要… ・ナの ・ナの に ・を 用い ・ を は が 料 れた	要電気実列・たいたいたるを用いた	元定数 なる小形 アンテラ アンテラ 工材料を いたアン	が化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	小形イ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 比技術 	ず ナの小	形化-			138141143155156160163
6.1.1 6.1.2 6.1.3 6.1.4 6.2 × 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	RFID の 小形アン 超小形ア タマテリ は じ EBG グラ Magneto 左手系 (DNG 材料	ジアン 概 テンテア め シーDiel (LH) 	ノテナ 要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	要電気 実験 まきらな いた 人用 をアン	元定数 なる小形 アンテラ アンテラ 工材料を いたアン	が化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	と技術 ンテ 形化	デ ナの小	形化-			138141149155156160163169

1 理

論

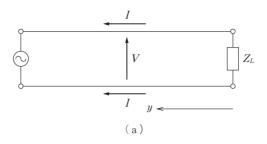
アンテナを学ぶにあたって必要な基礎理論について説明する。伝送線路理論からマックスウェルの方程式を含めて、アンテナ特性の理解が容易にできるように述べる。また、アンテナにおいて重要な特性である入力インピーダンスや放射パターンなどについても易しく解説する。

1.1 伝送線路理論

アンテナと送受信機を接続するには、伝送時間を考慮した伝送線路(分布定数回路)が必要であり、その基本的な考えを説明する。

分布定数回路は**図**1.1(a)のように平行導線 y 方向に伸びているとすると、図(b)のような集中定数回路を用いた等価回路で表すことができる。そのとき、回路の左端に電源 $Ee^{i\omega t}$ を接続すると、単位長さ当りの直列インピーダンス Z_s 、並列アドミタンス Y_b は、それぞれつぎのようになる。

$$Z_s = j\omega L + R (\Omega/m)$$


$$Y_b = j\omega C + G \text{ (s/m)}$$

図(a)に示した回路上の任意の点yにおける電圧V(y),電流I(y)に、図(b)に示す点yとわずかに離れた点 $y+\Delta y$ 間の4端子回路におけるキルヒホッフの法則を適用すると、

電流に関するキルヒホッフ第1の法則より

$$I(y) = Y_{p} \Delta y (V(y) + \Delta V) + I(y) + \Delta I \tag{1.1}$$

電圧に関するキルヒホッフ第2の法則より

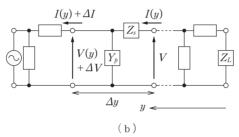


図1.1 分布定数回路とその等価回路表現

$$V(y) = Z_s \Delta y I(y) + V(y) + \Delta V \tag{1.2}$$

式(1.1)と式(1.2)より、つぎの微分方程式が得られる。

$$\frac{dV(y)}{dy} = -Z_s I(y) \tag{1.3}$$

$$\frac{dI(y)}{dy} = -Y_p V(y) \tag{1.4}$$

式 (1.3) を y で微分し、式 (1.4) を用いると

$$\frac{d^2 V(y)}{dy^2} = Z_s Y_p V(y) \tag{1.5}$$

また、式 (1.4) を y で微分し、式 (1.3) を用いると

$$\frac{d^2I(y)}{dy^2} = Z_s Y_p I(y) \tag{1.6}$$

この微分方程式を解くことにより、V(y)とI(y)は

$$V(y) = V_r e^{-\gamma y} + V_i e^{\gamma y} \tag{1.7}$$

$$I(y) = I_r e^{-\gamma y} + I_i e^{\gamma y}$$

$$=\frac{1}{Z_c}\left(V_i e^{\gamma y} - V_r e^{-\gamma y}\right) \tag{1.8}$$

となる。ここで

$$\gamma = \sqrt{Z_s Y_b} = \alpha + j\beta \tag{1.9}$$

$$Z_c = \sqrt{\frac{Z_s}{Y_p}} \tag{1.10}$$

であり、 γ , Z_c はそれぞれ**伝搬定数**, **特性インピーダンス**と呼ばれる。また、 α , β はそれぞれ**減衰定数**, **位相定数**と呼ばれる。

無損失の場合は、R=0、G=0となるので

$$\gamma = \sqrt{j\omega L j\omega C} = j\omega \sqrt{LC} \quad (\alpha = 0, \beta = \omega \sqrt{LC})$$
 (1.11)

$$Z_c = \sqrt{\frac{L}{C}} \tag{1.12}$$

となる。

 V_re^{-ry} と V_ie^{ry} の物理的な意味は, $e^{-j\omega t}$ を掛けてその実部を考慮することにより,それぞれ y 座標の増加する方向に進行する波,および y 座標の減少する方向に進行する波を表していることがわかる。通常,負荷を基準にするため、負荷に対する反対波、入射波と呼ばれる。

任意の点y における電圧V(y) と電流I(y) との比で,その点から負荷をみこむ入力インピーダンスZ(y) は,式(1.7) および式(1.8) から

$$Z(y) = \frac{V(y)}{I(y)} = Z_c \frac{V_i e^{\gamma y} + V_r e^{-\gamma y}}{V_i e^{\gamma y} - V_r e^{-\gamma y}}$$
(1.13)

負荷端の電圧 V(0), 電流 I(0) は式 (1.7), 式 (1.8) から

$$V(0) = V_i + V_r (1.14)$$

$$I(0) = I_i + I_r = \frac{1}{Z_c} (V_i - V_r)$$
(1.15)

となる。y=0 に接続されている負荷のインピーダンスを Z_L とすると、つぎの式を満たす。

$$V(0) = Z_L I(0) \tag{1.16}$$

この式に式(1.14)、式(1.15)を代入すると

$$\frac{V_r}{V_i} = \frac{Z_L - Z_c}{Z_L + Z_c} \tag{1.17}$$

式(1.13)をつぎのように変形すると

$$Z(y) = Z_c \frac{e^{\gamma y} + \frac{V_r}{V_i} e^{-\gamma y}}{e^{\gamma y} - \frac{V_r}{V_i} e^{-\gamma y}}$$

となり、この式に式(1.17)を代入すると次式が得られる。

$$Z(y) = Z_c \frac{Z_L(e^{\gamma y} + e^{-\gamma y}) + Z_c(e^{\gamma y} - e^{-\gamma y})}{Z_c(e^{\gamma y} + e^{-\gamma y}) + Z_L(e^{\gamma y} - e^{-\gamma y})}$$
(1.18)

双曲線関数 tanh γy は以下の式で定義される。

$$\tanh \gamma y = \frac{\sinh \gamma y}{\cosh \gamma y} = \frac{e^{\gamma y} - e^{-\gamma y}}{e^{\gamma y} + e^{-\gamma y}}$$
(1.19)

この式を式 (1.18) に代入すると

$$Z(y) = Z_c \frac{Z_L + Z_c \tanh \gamma y}{Z_c + Z_L \tanh \gamma y}$$
(1.20)

分布定数回路の特性インピーダンス Z_c で規格化すると、その規格化インピーダンス Z(y) は、つぎのようになる。

$$z(y) = \frac{z_L + \tanh \gamma y}{1 + z_L \tanh \gamma y} \quad \left(z_L = \frac{Z_L}{Z_C}, z(y) = \frac{Z(y)}{Z_C} \right)$$
(1.21)

 z_L =0 (短絡) のときは、式 (1.21) から、無損失とすると

$$z(y) = r + jx = j \tan \beta y \tag{1.22}$$

すなわち

$$x = \tan \beta y = \tan 2\pi \left(\frac{y}{\lambda}\right) \tag{1.23}$$

この場合の入力インピーダンスはリアクタンス成分のみで、 y/λ の関数となっている。 図 1.2 に x と y/λ の関数を示す。 短絡したところから y だけ離れた点からみこむインピーダンスは、y に大きく依存する。 すなわち以下のような関係になる。

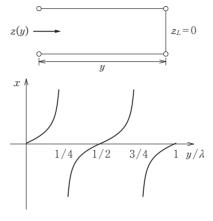


図1.2 短絡時の入力インピーダンス

$$0 < y < \frac{1}{4}\lambda \quad x > 0 \tag{1.24}$$

$$\frac{1}{4}\lambda < y < \frac{1}{2}\lambda \quad x < 0 \tag{1.25}$$

$$y = \frac{1}{4}\lambda \quad x = \infty \tag{1.26}$$

式 (1.24), 式 (1.25) はそれぞれインダクティブ、キャパシティブに働き、式 (1.26) は無限大、すなわち開放を意味する。このように、終端短絡の分布定数回路は線路長によって集中定数素子 jx として動作するが、周波数が変化すると波長が変わるため、その点に注意する必要がある.

任意の点yにおける反射係数 $\Gamma(y)$ は、 $V_r e^{-\gamma y}$ に対する $V_i e^{\gamma y}$ の比として

$$\Gamma(y) = \frac{V_r e^{-\gamma y}}{V_i e^{\gamma y}} = \Gamma(0) e^{-2\gamma y}$$
(1.27)

と与えられ、このとき、式 (1.13) は次式のように置き換えられる。

$$\Gamma(y) = Z_c \frac{1 + \Gamma(y)}{1 - \Gamma(y)} \tag{1.28}$$

また、負荷の位置 y=0 における反射係数を Γ とすると式 (1.17) より

$$\Gamma = \frac{Z_L - Z_c}{Z_L + Z_c} \tag{1.29}$$

となる。**電圧定在波比**(voltage standing wave ratio, **VSWR**)は次式で表せる。

$$VSWR(=\rho) = \frac{|V(y)|_{max}}{|V(y)|_{min}} = \frac{1+|\Gamma|}{1-|\Gamma|}$$

$$(1.30)$$

また、定在波の割合を示す別の指標として、反射係数 Γ を用いたリターンロス (return loss. RL) が次式で示される。

$$RL = -20\log_{10}|\Gamma| \text{ (dB)} \tag{1.31}$$

表 1.1 に,反射係数 Γ ,リターンロス RL,電圧定在波比 VSWR の代表的な数値関係を示す。

	, , , , , , , , , , , , , , , , , , , ,		, , , , , , ,	113 13 13 11 11 11 11 11 11 11
$ \Gamma $	RL (dB)	VSWR	伝達電力比 (1- Γ)×100%	備考
0	∞	1	100	整合
0.0316	30	1.07	99.9	
0.1000	20	1.22	99.0	
0.3162	10	1.92	90.0	電力の 10%が反射
0.333	9.54	2.00	88.9	
0.5012	6	3.01	74.9	電力の 25%反射
0.7079	3	5.85	49.9	電力の半分が反射
1	0	無限大	0	解放 or 短絡 or 純リアクタンス

表 1.1 反射係数 Γ リターンロス RL 電圧定在波比 VSWR の代表的な数値関係

1.2 マックスウェルの方程式

アンテナの放射を基本的に考えるには、マックスウェルの方程式 (Maxwell's equations) を避けては通れない。

マックスウェルの方程式は、電磁物理量をすべて位置と時間の関数として

E:電界 [V/m]

H:磁界〔H/m〕

D: 電東密度 [C/m²]

B:磁東密度「Wb/m²)

J: 電流密度 $[A/m^2]$

索引

位相定数 3	[(1)]		【せ】		比誘電率	8
横大逆ドアンテナ 40 イメージ理論 18		3		22	[ふ]	
Table Ta		-	,=: , , ; , ,	22	物理的小形アンテナ	27
(大) 下限 (本) で	イメージ理論	18	[7]		不平衡給電型アンテナ	73
下限 Q値	【え】		相対利得	22	[^]	
(か)	円筒座標	13	【た】		平衡給雷刑アンテナ	73
で限 Q値		10	帯域幅	42		69
Ton			[5]			13
直角座標						
機能的小形アンテナ 27 球座標 13 電圧定在波比 6 電気的小形アンテナ 26 電気的体積 44 伝搬定数 3 マイクロストリップ アンテナ 36 低級室 8 等方性アンテナ 22 特性インピーダンス 3 トップローディング 29 指向性 20 「の」 無負荷 Q 45 関連 16 であり	↑限 Q 値	48			ベクトルボテンシャル 	10
では、	【き】			13	【ほ】	
球面液 13 電気的小形アンテナ 26 電気的体積 44 伝搬定数 3 マイクロストリップ アンテナ 36 でから 3 等方性アンテナ 22 特性インピーダンス 3 トップローディング 29 特性インピーダンス 3 トップローディング 29 指向性 20 「の」 目記平衡作用 101 ノーマルモードへリカル 実効利得 23 アンテナ 33, 145 準静電界 16 「は」 メアンダライン アンテナ 33, 145 メタマテリアル 155 スカラポテンシャル 10 ステップアップ比 100 ストークスの定理 9 寸法制約付小形アンテナ 27 微小ダイポールアンテナ 14 微小ループアンテナ 14 有限積分法 106 【あ】	機能的小形アンテナ	27	[7]		放射効率	85
【く】 「電気的体積 44 伝搬定数 3 マイクロストリップ アンテナ 36	球座標	13	電圧定在波比	6	放射電磁界	16
(く) 信報定数 3 マイクロストリップ マンテナ 36 で	球面波	13			(幸)	
グリーン関数 12 【と】	[<]					
【け】 透磁率		12		3		36
透版学		12	[と]			30
特性インピーダンス 3 「む」	[(†]		透磁率	8	[み]	
指向性 20	減衰定数	3	• • • • • •	22	ミューチップ	139
指向性 20 【の】 無負荷 Q 43 自己平衡作用 101 実効利得 23 アンテナ 33, 145 メアンダライン アンテナ 33, 145 メアンダライン アンテナ 147 メタマテリアル 155 スカラポテンシャル 10 ステップアップ比 100 ストークスの定理 9 寸法制約付小形アンテナ 27 微小ダイポールアンテナ 14 微小ループアンテナ 14 有限積分法 106	[L]		_ · · · — ·	•	【む】	
一利得 23 【の】 【め】 自己平衡作用 101 ノーマルモードヘリカル メアンダライン 実効利得 23 アンテナ 33, 145 メアンダライン 運静電界 16 【は】 アンテナ 147 人のファンテナ 10 スタマテリアル 155 スカラポテンシャル 10 ステップアップ比 100 エーメント法 105 ストークスの定理 9 でメトークスの定理 14 でリース・アンテナ 14 有限積分法 106	指向性	20		23	無負荷 Q	43
国	——利得	23	[0]		141	
準静電界 16 【は】 アンテナ 14 メタマテリアル 155 スカラポテンシャル 10 ステップアップ比 100 ストークスの定理 9 寸法制約付小形アンテナ 27 微小ダイボールアンテナ 14 微小ループアンテナ 14 有限積分法 106						
【す】 パターン積分法 85 スカラポテンシャル 10 バラン 69 ステップアップ比 100 ストークスの定理 9 寸法制約付小形アンテナ 27 微小ダイボールアンテナ 14 微小ループアンテナ 14 有限積分法 106			アンテナ 33,	145		1.4-
は9パターン積分法85【も】スカラポテンシャル10バラン69ステップアップ比100【ひ】モーメント法105ストークスの定理9微小ダイポールアンテナ14【ゆ】で法制約付小形アンテナ27微小ダイポールアンテナ14有限積分法106	=	16	【は】			
スカラポテンシャル 10 ステップアップ比 100 ストークスの定理 9 寸法制約付小形アンテナ 27 微小ダイポールアンテナ 14 微小ループアンテナ 14 有限積分法 106	【す】		 パターン積分法	85		155
ストークスの定理 9 【ひ】 寸法制約付小形アンテナ 27 微小ダイポールアンテナ 14 微小ループアンテナ 14 有限積分法 106	スカラポテンシャル	10			(も)	
マークスの定理 9 寸法制約付小形アンテナ 27 微小ダイポールアンテナ 14 微小ループアンテナ 14 有限積分法 106		100	[7]		モーメント法	105
一	· -	-			[\psi]	
	寸法制約付小形アンテナ	2/				106
			比透磁率	8	有限要素法	105

				索		引	187
誘電率誘導電磁	界	8 16	「 ラジアン球 ランダムフィ	ら】 ールド法	26 利 85	【り】 得	22
	[B]			F]	Q 7	アクタ法	85
Balun		69	FDTD 法		05 RFI	(R)	138
	[C]	1.05		L]		[v]	136
CRLH	[D]	165	LH 材料	o]	55 VSV		6
DNG	נטו	155	OSL 法		83	[w]	
2110	(E)	100		Q]		eeler cap 法	85
EBG 構造		155	Q 値		43		

--- 著 者 略 歴 ---

1980年 防衛大学校(電気工学専門)卒業

1990年 筑波大学大学院工学研究科博士課程修了(物理工学専攻)

工学博士

1990年 航空自衛隊航空開発実験集団

1992年 防衛大学校助手 1994年 防衛大学校講師

1996年 マクマスタ大学客員研究員 (1年間)

1997年 防衛大学校助教授 2004年 防衛大学校教授

現在に至る

小形アンテナの基礎

Fundamentals of Small Antennas

© Hisashi Morishita 2011

2011年5月18日 初版第1刷発行

*

検印省略

 著者
 森
 下
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C

112-0011 東京都文京区千石 4-46-10 **発行所** 株式会社 **コ ロ ナ 社**

CORONA PUBLISHING CO., LTD.

Tokyo Japan

振替 00140-8-14844 · 電話 (03) 3941-3131 (代)

ホームページ http://www.coronasha.co.jp

ISBN 978-4-339-00825-8 (柏原) (製本:愛千製本所)

Printed in Japan

本書のコピー、スキャン、デジタル化等の 無断複製・転載は著作権法上での例外を除 き禁じられております。購入者以外の第三 者による本書の電子データ化及び電子書籍 化は、いかなる場合も認めておりません。

落丁・乱丁本はお取替えいたします