まえがき

本書で取り扱う内容は、航空機設計の一連の流れの中の最初の段階である「概念設計」である（概念設計の意味と位置付けについては1章で説明する）。
本書を理解するための前提として、航空工学に関する基礎知識がある程度は有していることが求められる。すなわち、飛行の原理、推進機関の種類、航空機各部の名称とその働きなど、航空工学の初期としての内容である。航空機の性能（航続距離や最大速度）の推算方法についての知識があることは望ましいが、この航空機性能については本書でも簡潔に11章で取り扱う。
本書を通読されるときの順番であるが、航空機性能推算方法を含めた航空工学の基礎知識を有している読者は、6章の序説に引き続いて1章から順番に読んでいただきたい。9章までがⅠ部であり、この段階で機体三面図の初期案を描くことができるようになる。10章から15章までがⅡ部であり、設計要求を満たす機体諸元のうちで、ある一定の基準に基づいた一種の最適値を得ることを目指す（あくまでこの概念設計段階での最適値である！）。
航空機性能の知識が少ない読者は、3章まで読んで進めてからいったん11.2節の航空機性能に関する記述を読んでのちに、4章へ戻ってもらえればよい。
超音速旅客機の設計に興味がある読者は、14章まで読了したのちに15.1節を読んでもらえればよい。新形態あるいは将来の航空機に関しても、本書の方法を活用して概念設計した例を15.2節と15.3節で簡単に紹介している。
なお、本書は、東京大学工学部航空宇宙工学科において学部３年生と４年生向けに筆者が担当している「航空機設計法」の講義内容をベースにしてまとめたものである。
2011年10月
李家賢一
目次

0. 序論 .. 1

I部

1. 航空機設計プロセスの概要

1.1 航空機開発の流れ ... 9
 1.1.1 市場調査 .. 9
 1.1.2 市場要請 .. 11
 1.1.3 製品企画 ... 12
 1.1.4 設計要請 .. 13
 1.1.5 設計プロセス ... 14

1.2 概念設計 ... 19

コーヒーブレイカー船舶航空機の単位 23

2. 機体一般配置の決定

2.1 主翼の上下位置 ... 24
 2.1.1 高翼 ... 25
 2.1.2 中翼 ... 27
 2.1.3 低翼 ... 28
 2.1.4 主翼配置の比較 .. 30

2.2 エンジン配置 ... 33
 2.2.1 プロペラ機 ... 33
 2.2.2 ジェット機 ... 37
<table>
<thead>
<tr>
<th>iv</th>
<th>目次</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.3</td>
<td>エンジン配置の比較</td>
</tr>
<tr>
<td>2.3</td>
<td>尾翼配置</td>
</tr>
<tr>
<td>2.3.1</td>
<td>水平尾翼</td>
</tr>
<tr>
<td>2.3.2</td>
<td>垂直尾翼</td>
</tr>
<tr>
<td>2.4</td>
<td>脚配置</td>
</tr>
<tr>
<td>2.4.1</td>
<td>尾輪配置</td>
</tr>
<tr>
<td>2.4.2</td>
<td>前輪配置</td>
</tr>
<tr>
<td>2.4.3</td>
<td>自転車配置</td>
</tr>
<tr>
<td>コーヒーブレイク</td>
<td>プロペラ機の左旋回回向</td>
</tr>
</tbody>
</table>

3. 舷体設計

3.1	舷体の働きと種類	52
3.2	舷体寸法の決め方の概要	53
3.3	客室設計	54
3.3.1	断面形状	54
3.3.2	座席横配列	55
3.3.3	客室長さ	57
3.3.4	非常口	58
3.4	貨物設計	59
3.5	コックピット	60
3.6	舷体外形	61
コーヒーブレイク	エンジンの一発停止	62

4. 主要諸元の決定（第1次）

4.1	サイジングで決定される主要諸元	64
4.2	最大離陸重量の見積り	65
4.2.1	機体重量の分解	66
4.2.2	重量推算の方法	67
4.2.3	mission fuel fraction の求め方	69
4.2.4	最大離陸重量の推算	75
4.2.5 最大離陸重量の算定例

4.3 主翼面積とエンジン推力（パワー）の算定

4.3.1 推定比と抵抗の推定

4.3.2 空気性能の推定

4.3.3 着陸性能の推定

4.3.4 上昇性能の推定

4.3.5 巡航速度の推定

4.3.6 グラフへのプロット

4.3.7 推定の例

4.4 エンジンの選定

コーヒーブレイク 航空機の高度表示

5. 2次元翼力設計

5.1 翼型の表示法

5.1.1 NACA 4桁翼型

5.1.2 NACA 5桁翼型

5.1.3 NACA 層流翼型

5.2 2次元翼型の空力特性

5.2.1 翼面上の流速分布

5.2.2 翼型の等速特性

5.3 非圧縮性流中で用いられる翼型の設計方針

5.4 圧縮性の影響

5.4.1 遅音速翼型

5.4.2 超音速飛行

5.5 翼型の選定

5.5.1 低速機体

5.5.2 高速機、遅音速の航空機

5.5.3 超音速航空機

コーヒーブレイク 航空機の速度表示
6. 主 翼

6.1 主翼に要求される事項……………………………………………………………128
6.2 主 翼 平 面 形……………………………………………………………………128
 6.2.1 主翼アスペクト比…………………………………………………………129
 6.2.2 後 退 角……………………………………………………………………130
 6.2.3 平均空力翼弦………………………………………………………………133
 6.2.4 コーナー比…………………………………………………………………134
 6.2.5 厚 み 比……………………………………………………………………135
 6.2.6 ねじり下げ…………………………………………………………………135
 6.2.7 上 反 角…………………………………………………………………136
 6.2.8 胴体取付け角………………………………………………………………136
6.3 高 揚 力 装 置……………………………………………………………………137
 6.3.1 高揚力装置の効果と種類…………………………………………………137
 6.3.2 高揚力装置使用上の注意点………………………………………………141
6.4 主翼上の各種舵面………………………………………………………………142
 6.4.1 エルロン…………………………………………………………………143
 6.4.2 スポイラー…………………………………………………………………144
6.5 高亜音速から速音速飛行までの機体の主翼設計……………………………146
6.6 機体三面図面上の主翼の形状…………………………………………………146
 6.6.1 ターボプロップ旅客機…………………………………………………146
 6.6.2 遅音速ジェット旅客機…………………………………………………147
 6.6.3 主翼平面形の定め方……………………………………………………147

コーヒーブレイク 横 風 着 陸…………………………………………………………149

7. 尾 翼

7.1 水 平 尾 翼………………………………………………………………………151
 7.1.1 水平尾翼の働き…………………………………………………………151
 7.1.2 水平尾翼容積の定義……………………………………………………154
 7.1.3 水平尾翼容積に影響する他の要素……………………………………156
 7.1.4 その他の水平尾翼に対する考慮点……………………………………159
7.2 垂直尾翼
 7.2.1 垂直尾翼の働き
 7.2.2 垂直尾翼容積の定義
 7.2.3 垂直尾翼容積に影響する他の要素
 7.2.4 その他の垂直尾翼に対する考慮点

7.3 舵面のサイジング

7.4 カナード（先尾翼）

7.5 尾翼面積の定義

7.6 コヒーレンス 着陸の方法

8. 脚配置

8.1 脚位置の決定
 8.1.1 自転車配置
 8.1.2 尾輪式配置
 8.1.3 前輪式配置

8.2 車輪寸法の決定

8.3 コヒーレンス 失速とスピン

9. 重量と重心と初期三面図

9.1 重量推算
 9.1.1 重量を近似的に算出する方法
 9.1.2 データベースに基づく重量推算法

9.2 重心位置

9.3 補足事項
 9.3.1 濃面積
 9.3.2 最前方および最後方の重心位置

9.4 コヒーレンス 航空機の「通行」規則
II部

10. 空力特性の推算

10.1 揚力の推算

10.1.1 揚力傾斜と零揚力角の見積り

10.1.2 最大揚力係数の見積り

10.2 高揚力装置の特性推算

10.2.1 後縦フラップ

10.2.2 前縦フラップ

10.3 抵抗推算

10.3.1 有害抵抗

10.3.2 誘導抵抗

コーニープレイク VFR と IFR

11. 性能推算

11.1 エンジン推力の推算

11.1.1 ターボファンエンジンの寸法と重量

11.1.2 エンジン推力の発生方法

11.1.3 ターボファンエンジンの性能曲線

11.1.4 エンジン性能の無次元表示

11.2 機体の性能推算

11.2.1 性能推算の概要

11.2.2 高亜音速以上の航空機の巡航速度

11.2.3 離着陸性能

コーニープレイク 航空機とパイロット免許のカテゴリー

12. 概念設計で考慮すべきその他の要素

12.1 飛行性の確認

12.2 航空機のコスト
12.3 航空機構造概論 ... 227
 12.3.1 航空機の耐空類別 .. 228
 12.3.2 航空機に働く荷重 .. 228
 12.3.3 機体構造 .. 229
 12.3.4 構造設計の考え方 .. 233
コーヒーブレイク 航空機の機体価格 .. 234

13. 主要諸元の決定（第2次）と三面図の修正

13.1 カーペットプロット .. 236
13.2 三面図の見直し .. 239
13.3 第2次サイジングの具体的な手順 ... 240
コーヒーブレイク 予備燃料 .. 243

14. 設計経緯の吟味

14.1 概念設計手順のまとめ ... 244
14.2 決断 ... 244
14.3 再び市場調査と航空機要予測 ... 247
14.4 法規 ... 249
14.5 航空機のライフサイクル .. 250
コーヒーブレイク 飛行高度 ... 252

15. 超音速旅客機と新形態航空機の概念設計

15.1 超音速旅客機 ... 253
 15.1.1 サイジングに必要なデータ ... 254
 15.1.2 主翼、尾翼形状の決定 .. 255
 15.1.3 超音速リージョナルジェット機の概念設計例 257
15.2 新形態航空機 ... 257
 15.2.1 ブレンドドウィングボディー ... 257
 15.2.2 その他の新形態航空機 ... 259
15.3 今後の航空機の動向

15.3.1 離着陸時の騒音低減を目指した機体

15.3.2 水素燃料航空機

コーヒーブレイク MEL と GOOSEACAT

おわりに

付録

単位換算表

標準大気表

引用・参考文献

索引
序論

航空機設計とは

航空機設計とは、まったくゼロの状態から作業を開始して、いまだにない新たな機能や性能を有する航空機の形を決定していく作業である。ここで、航空機の形を決定することは、ただ単に機体の外形成を定めることだけではなく、機体内部の詳細に至るまで図面化し、それを基本機体の実物理造につなげていくことである。

学問領域としての航空工学は、おもに空気力学、構造力学、飛行力学、制御工学ほか、いわゆる要因技術的な領域（または分野）で構成されている（図0.1）。しかし、航空機は各種のシステムを統合化して一つのシステムに仕上げることが要求されるため、これらの要素技術的な領域（または分野）ばかりを修得しても、航空機そのものにはつながらない。図中央に置かれた航空機設計学を通じて、初めて航空機というシステムの完成に至る（そういう意味で航空機設計はシステムインテグレーションの一種と呼んでよい）。

本書をとりまとめた理由

東京大学工学部航空宇宙工学科では、戦前から航空機設計教育が行われ、戦後の航空再開後は、海軍で実際に航空機設計を担当された山名正夫先生と中口博先生が、実体験を基に設計講義をなされてきた。それは養賢堂刊行の「飛行
0. 序論

機設計論）としてまとめられている（この本は過去に出版された日本で唯一の本格的な航空機設計に関する教科書といえる）。その後、C1輸送機の主翼空力設計にも関係された佐藤淳造先生を経て、現在は筆者がこの設計教育を担当している。ところで、YS-11を除いて民間機を長らく製造してこなかったわが国において、機体設計のベースとなる統計データが決定的に不足してしまっている。前記の「飛行機設計理論」では海軍時代の航空機のデータをおもに用いて設計が論じられている。同書の設計に対する思想はいまでも生きており、本書でも随所に引用することになるが、高速化・巨大化された航空機が飛行する現在においては同書の設計データが古くなってしまっていることは否めない。このため、筆者が担当している講義では、欧米の大学で使われている教科書をベースとせざるを得なかったのが現状である。欧米の大学で航空機設計教育に用いられている代表的な教科書には文献2）〜6）がある。

これらの教科書を基本として筆者は講義プリントベースで講義を行ってきたわけであるが、少しでも学生の理解を容易にかつ航空機を専門的に理解している集団の裾野を広げるために、日本語の航空機設計の教科書が必要であると考え、今回本書を上梓するに至ったのである。英文の教科書をそのまま講義に使用する方法もあるが、むしろ日本語に比べて情報伝達量のスピードが劣ること、むしろ上記の教科書のほとんどは大部で日本の講義体系になじまないところがあるため、不適であると判断している。例えば文献2）は8冊に分かれており、読破するには膨大な時間が必要となる。しかも文献中の多くのページはデータ集に費やされている。これらは、航空機のあらゆる機種に対応できるようにするために、多くのデータが集められた結果である。つまり文献2）は教科書というよりもむしろ、概念設計の段階で必要に応じて参照する事典のようなものと考えてよい。

本書が目指す目標

本書が目指していることは、航空工学の基礎知識を有している学生や若い技

† 脅付き数字は、巻末の引用・参考文献の番号を表す。
術者に対して、航空機概念設計の考え方を学びに方法論をマスターさせ、かつ実践的に活用できるようにすることである。その目的のためには、百科事典的にあらゆる機種を網羅する必要はなく、代表的な機種に限って設計の流れを説明すればよい。それによって、学生は概念設計とはどのようなもので、その設計結果が後の設計作業にどのようにつながっていくかを理解することができる。このような方針で本書はとりまとめている。

本書が具体例として扱う航空機は、単発軽飛行機、ジェット旅客機および超音速旅客機に限ることとした。単発軽飛行機には、航空機概念設計のエッセンスがすべて含まれており、かつ比較的簡便に設計することができる。超音速で飛行するジェット旅客機を設計できれば、これに小型のビジネスジェット機に応用することは容易であり、また双発プロペラ機の設計にもその知識が使える。このため超音速旅客機の概念設計手法について詳細に取り上げる（単発軽飛行機については概念設計の全般（本書前半部）においておもに紹介するにとどめた）。一方、超音速旅客機は、通常の航空機とはまったく異なる形態であり、超音速飛行条件の要求を考慮に入れる必要がある。そこで、本書では、超音速機の初步的設計概念について章を分けて述べることとした（15.1節）。同節では超音速機の概念設計手順を詳細に紹介しないが、節中で述べられている超音速機の性質、性能を前章までの設計手順に適切に組み込むことで学部レベルで超音速機の概念設計を行うことができるようになる。

これらの機種とは異なる機種を設計する場合には（例えば、双発プロペラ機、アプロパラ機、飛行艇など）、それぞれの機種に独特の設計データが必要になる場合がある。これらのデータは上記文献（例えば文献2）などで手に入れることができる。また、本書の中でも必要に応じて参考文献を明示するように努めた。15章には、超音速機以外に、新形態航空機として、さまざまな形態を有した機体の設計例を参考までに示した。同章には機体例を複数示したが、本書の主対象は通常の伝統的な形態（conventional configuration，胴体と主翼の組合せ形態）の機体であることを、念のために断っておく。
0. 序論

なお、航空機を実際に設計されている技術者の方々が本書を手に取られる
と、実際の設計と異なる手順や考え方方気軽されると、この点について
は、本書の「おわりに」で説明したい。

本 書 の 構 成

本書では前述のように、概念設計の流れについて一通り説明することで、読
了後には設計要求を満たす機体の概形を決定でき、かつ機体三面図を仕上げら
れることを目標としている。三面図を仕上げるためには、航空機構造に関する
知識も必要であるため、構造面からの検討も行う。航空機には各種の装備品や
機器類（油圧や電気系統）が重要な役目を果たしているが、本書が取り扱う概
念設計の段階では、これらについては深くは考慮しない。

ところで、前述の航空機概念設計の教科書のうち、Roskamの文献 2）では、
設計開始の比較的初期に要求されている性能（設計要求という）を満たす機体の
主要パラメータを決定し、それをベースに機体の三面図を描く手法がとられ
ている。三面図を描いたあとに機体の空気力学的特性や飛行力学的特性を詳
しく見積もる作業を行っている。しかしながら、最初の三面図を描いた段階で決
めた諸量をベースにして設計が進められ、それに、それらの値が最適値である
かどうか判断に悩む、という方法である。一方、Raymerの文献 3）では、経験値
に基づき比較的設計の速い段階で機体の形態を決めたのちに空力特性ほかの詳
細な推算を行い、概念設計の最後の段階に至って初めて設計要求を満たす機体
のうちで最適な諸量を決定する作業が行われる。このため設計の最終段階に
至ってはじめて機体の三面図を描く段階に至る。

本書は、1 年間にわたる講義の内容をベースとして述べているが、上記の文
献 3）のように概念設計の最終段階ではじめて機体の詳細な図面を描く方法を
とる。講義の1年間、学生は図面を描く準備作業ばかりで、自分が設計しよう
としている機体のイメージをつかむことが困難になる。実際の設計作業では
概念設計を一通り行ったあとで、設計結果を見直して、再度同様な作業を行っ
て設計結果を詰めめることが必ず行われる。しかし、この方法を講義に適用し
ても、限られた時間での講義を考えると、同じ作業を何度も繰り返すことは、
時間的に制約が多い。

これらの点を踏まえて本書では、概念設計を2段階に分けている。第1段階（本書のI部、講義では前半の半年間に相当する）では、まず設計機体の三面図初期計を仕上げることを目標とする。第2段階（本書のII部）では描いた三面図を基にして可能な範囲で、より詳細な空力特性推算、性能推算等を行い、その結果を基にして再度機体の主要諸元を決定する作業を行う。この段階では設計要求を満たすと同時に、例えば機体重量が最小になるような最適化まで目指して機体諸元を決定することを目標とする。

2段階に分けた手法を用いることによって、設計作業の比較的早い段階で機体の全体像を学生が把握することが可能になる。しかし、つきの段階でより詳細な検討を行うことによって、学生が設計した機体について、ある判断基準のもとで最適な解を追求することが可能になり、学生、自分の設計した結果にある程度の自信を抱けると判断している。

ただし、2段階に分けて概念設計を講義で行うことは、作業の複雑化と計算の煩雑化を引き起こす恐れがある。そこで実際の講義では、文献5）、6）でも用いられた表計算方式を第2段階に導入している。多くの学生が使用している表計算ソフトを使いたいから、導入が容易であり、設計ソフトの改良も簡便であり、また異なる機種設計への拡張も可能であるとの判断からである。本書では、13章においてその観点を示した。

また、第2段階では、詳細な空力特性の推算などが行われるが、この作業のためには広い範囲にわたる、詳細な知識が要求される。これらの必要な知識をすべて本書で網羅しようとすると、文献2）の紹介で述べたのと同じように本書の分量が膨大になる恐れがある。そこで本書では、これらの推算に当たっては、頭に入れておかななければならない基礎知識、背景について主として説明することとし、具体的な推算方法は文献を参考にしてもらうこととした。なお、文献をあたることが困難な読者が困らないように、最低限の情報は本書内で説明することとしている。
航空機関連の話題

日本では航空機というとほぼ間違いなく旅客機を意味し、旅客機以外の航空機に搭乗した学生を見かけることはほとんどない。また、航空機の操縦経験がある学生は皆無に等しい。航空機にはある程度興味を持って、航空工学を学ぶことを選択した学生ですら同様である。この状況に鑑み、本書では航空機設計に直接は関係しないが航空機の運用に関連した事項についても、筆者の知る範囲に限られるのが可能だけ紹介することとした。そこで、1章以降の各章末に、航空機に関する各種トピックスについて「コーヒーブレイク」と称して掲載している。

単位系と標準大気表

現在の量単位の標準は国際単位系（SI, Système International d’Unités）であるが、航空機の世界では、これと異なる単位系が存在している。これは米国を中心にして航空機が発達してきたためであり、米国で使われているフィート・ポンド系が一つの主流である。一方、いわゆる航空機設計技術者はフィート・ポンド系に慣れている必要があると考えられ、本書ではフィート・ポンド系を主たる単位系とし、従来の単位系としてg・m系やkg・m系により記述することとした。航空機関連の単位系の詳細については1章末のコーヒーブレイクを参照されたい。また、空気の各種物理量については国際的な標準が決められており、標準大気表（ICAO standard atmosphere, ISA と略称、ICAO は International Civil Aviation Organization の略称で、国際民間航空連盟）にまとめられている（例えば、海面上では1気圧（atm）、摂氏15度（℃）と決められている）。

単位換算表と標準大気表は「付録」として巻末に掲載している。

航空機設計が大学で教えられている理由

ここで、航空工学のカリキュラムの中で航空機設計が教えられている意義について説明したい。その例として、東京大学工学部航空宇宙工学科における航空機設計教育の流れを概観しておくと。

・学部2年生後半の半年間（週1回1.5時間）：はじめて航空工学を学ぶ学生を対象として、航空工学の初歩ならびに航空機性能推算法の講義が行われ
る。

・学部３年生後半から４年生前半までの１年間（週１回，１.5 時間）：航空機設計法（本書の内容に相当する）の講義が行われる。

この一連の講義を通じて学生は，航空機概念設計法の初歩をマスターすることができる。

・卒業直前（4年生最後の約３か月間）には「卒業設計」と呼ばれる設計演習が行われる。学生１人が航空機１機ずつの設計を行うことを原則として，航空機の概念設計と機体構造の概念検討まで行われる。

・大学院においても院生グループによる設計演習を半年間の講義期間に行っている。学部とは異なり，複数の院生グループによって１機の機体を仕上げるのを目標としている。口絵ならびに15章で紹介する機体は、主として，この大学院生による設計例である。

当学科に三つのある教育理念の一つを掲げると「航空宇宙工学を題材にしてシステム統合化能力を教育すること」となっている。航空機設計教育はこの理念を達成するために重要な役目を果たすと考え，土木の設計教育が当学科で行われてきた。航空機を設計し，製造を経て，行に至るまで，長い年月と多人数による作業が必要である。それぞれを大学ですべてを教えることは不可能であるが，機体の形態を決定する「概念設計」の段階までをある程度マスターすることができれば，本章の前に示したシステムインテグレーションの一端を修得することができると考え，そのために航空機設計の講義が学科設立当初から行われてきている。

ま と め

以上，本書が指している目標をおもに説明してきた。本書を通じて航空機開発のプロセスの一部である航空機概念設計の流れを把握してもらえば幸いである。なお，本書で示した設計手法や結果は，あくまでも概念設計段階における解であり，これらの数値をそのまま実機製作に用いることができないことはいうまでもない。
<table>
<thead>
<tr>
<th>項目</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>火星航空機</td>
<td>261</td>
</tr>
<tr>
<td>加速停止距離</td>
<td>219</td>
</tr>
<tr>
<td>型式証明</td>
<td>17</td>
</tr>
<tr>
<td>カテゴリー</td>
<td>222</td>
</tr>
<tr>
<td>カナード</td>
<td>172</td>
</tr>
<tr>
<td>カーベットブロット</td>
<td>236,242</td>
</tr>
<tr>
<td>貨物室</td>
<td>59</td>
</tr>
<tr>
<td>管制承認</td>
<td>205</td>
</tr>
<tr>
<td>間接航路費</td>
<td>223</td>
</tr>
<tr>
<td>機体外形形状</td>
<td>15</td>
</tr>
<tr>
<td>機体価格</td>
<td>234</td>
</tr>
<tr>
<td>機体三面図</td>
<td>22,242</td>
</tr>
<tr>
<td>機体重量比</td>
<td>67</td>
</tr>
<tr>
<td>機体のファイバー化</td>
<td>11</td>
</tr>
<tr>
<td>基本装備</td>
<td>15</td>
</tr>
<tr>
<td>航空路</td>
<td>205</td>
</tr>
<tr>
<td>校正大気速度</td>
<td>126</td>
</tr>
<tr>
<td>航空距離</td>
<td>71,215</td>
</tr>
<tr>
<td>後退角</td>
<td>130</td>
</tr>
<tr>
<td>高揚力装置</td>
<td>137</td>
</tr>
<tr>
<td>高翼配置</td>
<td>20,25</td>
</tr>
<tr>
<td>後流</td>
<td>159</td>
</tr>
<tr>
<td>国際単位系</td>
<td>6</td>
</tr>
<tr>
<td>国際民間航空条約</td>
<td>250</td>
</tr>
<tr>
<td>5 柄翼型</td>
<td>111</td>
</tr>
<tr>
<td>コックピット</td>
<td>60</td>
</tr>
<tr>
<td>コンコルド</td>
<td>253</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>項目</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>サイジング</td>
<td>14,20</td>
</tr>
<tr>
<td>サイジングブロット図</td>
<td>100</td>
</tr>
<tr>
<td>最大推力</td>
<td>209</td>
</tr>
<tr>
<td>最大揚抗力</td>
<td>81</td>
</tr>
<tr>
<td>最大離陸重量</td>
<td>66</td>
</tr>
<tr>
<td>最大連続推力</td>
<td>95</td>
</tr>
<tr>
<td>最低離陸速度</td>
<td>206</td>
</tr>
<tr>
<td>座席横配列</td>
<td>55</td>
</tr>
<tr>
<td>3 発機</td>
<td>40</td>
</tr>
<tr>
<td>索引</td>
<td>281</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>トレッチ</td>
<td>11</td>
</tr>
<tr>
<td>スーパークリティカル</td>
<td>121</td>
</tr>
<tr>
<td>翼型</td>
<td>128</td>
</tr>
<tr>
<td>スピーン</td>
<td>168, 179</td>
</tr>
<tr>
<td>スプリットフラップ</td>
<td>138</td>
</tr>
<tr>
<td>スポイラ</td>
<td>144</td>
</tr>
<tr>
<td>スポイラーエルロン</td>
<td>145</td>
</tr>
<tr>
<td>スラット</td>
<td>140</td>
</tr>
<tr>
<td>スリップストリーム効果</td>
<td>51</td>
</tr>
</tbody>
</table>

【仕】
ジェット機 | 37 |
ジェット旅客機 | 95, 99, 103 |
——の重量推算 | 78 |
指示大気速度 | 126 |
市場調査 | 9, 247 |
市場要求 | 11 |
システムインテグレーショ | 1 |
失速 | 179 |
実用上昇限 | 97, 214 |
自転車配置 | 49 |
シートピッチ | 57 |
シミー | 47 |
地面効果 | 30 |
ジャイロ効果 | 51 |
自由滑走距離 | 221 |
終局荷重 | 228 |
主要構造部材配置図 | 23 |
主翼アスペクト比 | 129 |
主翼重量 | 185 |
シュリング | 11 |
昇降舵 | 160 |
昇降舵固定 | 154 |
昇降舵自由 | 154 |
詳細設計 | 16 |
場周経路図 | 174 |
上昇限界 | 175 |
上昇巡航方式 | 215 |
上昇所要時間 | 97 |
上反角 | 136 |
ショートパブル | 116 |
尻すり角 | 63 |
シングルスロットード | 139 |
フラップ | 140 |
真高度 | 107 |
真大気速度 | 126 |
進入復行 | 206 |

【【【】】】
推進系統重量 | 187 |
水素燃料 | 263 |
垂直尾翼 | 44 |
垂直尾翼容積 | 164 |
水平尾翼 | 43 |
水平尾翼容積 | 154 |
水陸両用機 | 34 |
推力重量比 | 64 |

【ので】
バラドックス | 115 |
短距離離着陸航空機 | 27 |
単発機 | 33 |
単発プロペラ機 | 92, 98, 102 |

【せ】
地上試験 | 17 |
着陸滑走距離 | 221 |
着陸許可 | 174 |
着陸復行 | 206 |
中央翼 | 28 |
中翼配置 | 27 |
超大型旅客機 | 260 |
超音速航空機 | 126 |
転換運航機 | 226 |

【て】
抵抗発散 | 119 |
抵抗発散マッハ数 | 119 |
ディープストール | 38 |
低翼配置 | 20, 28 |
テーパー比 | 134 |
転覆角 | 176 |

【と】
動安定 | 157 |
等価アスペクト比 | 173 |
等価摩擦抵抗係数 | 84, 200 |
同時進行型設計プロセス | 19 |

耐空証明 | 17 |
耐空性基準 | 13 |
耐空性審査要領 | 249 |
耐空類別 | 228 |
代替空港 | 74 |
対地速度 | 126 |
タイプ | 222 |
ダウンウィンド | 174 |
経円分布 | 134 |
ダブルスロットードフラップ | 140 |
トルク効果 | 50 |
<table>
<thead>
<tr>
<th>索引</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>【な】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>内軸スポイラーナセル重量</td>
<td>144</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【に】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>二重垂直尾翼</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【ね】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>滅れアスペクト比</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>滅れ面積</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【の】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>シャトル</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>ノーティカルマイル</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【は】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>バイパス比</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>バイロン</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>バズ</td>
<td>162</td>
<td></td>
</tr>
<tr>
<td>バースト</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>シャフト</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>パルプの崩壊</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>バーボイジング</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>バルジ</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>バー荷重</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【ひ】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ビーキー翼型</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>飛行機</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>飛行計画書</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>非精密進入</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>非対称推力効果</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>左旋回傾向</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>必要推力</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>必要パワー</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>標準計器除出方式</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>標準計器出着方式</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>標準大気表</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>尾翼</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>尾翼重量</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>尾翼容積</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【め】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>比余裕パワー</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>尾輪配置</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>ヒンジライン</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>メインフレーム</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【も】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>モックアップ</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【ゆ】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>フライトレベ</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>フラットマシン</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【よ】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>フレア</td>
<td>31, 174</td>
<td></td>
</tr>
<tr>
<td>フレア距離</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【ら】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>リアジェット方式</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>リアマウントエンジン方式</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【り】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>リアローディング</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【は】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>リフティングカーティア</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【み】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>マスバランス</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>マッハ数</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【れ】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>連邦航空法</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>【ろ】</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6字系列の翼型</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>ロングバブル</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>ロンジロン</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>ローンチカスタマー</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ATO</td>
<td>altimeter setting</td>
<td>A/W</td>
</tr>
<tr>
<td>AEO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| AGL | | | | CAM | C:
| A/ W | | | | | C:
| A/ W | | | | | C:

<table>
<thead>
<tr>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW</td>
<td>IAS</td>
<td>ICAO</td>
<td>ILS</td>
<td>IOC</td>
<td>ISA</td>
</tr>
<tr>
<td>HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA</td>
<td>MEL</td>
<td>mission fuel fraction</td>
<td>MRO</td>
</tr>
<tr>
<td>MSL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td>NACA</td>
<td>OEI</td>
<td></td>
</tr>
<tr>
<td>NASA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOR</td>
<td>VFR</td>
<td>VOR</td>
<td>VOR</td>
</tr>
<tr>
<td>VOR</td>
<td>VOR</td>
<td>VOR</td>
<td>VOR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA</td>
<td>V/ C</td>
<td>T/T</td>
<td>T/S</td>
</tr>
<tr>
<td>TCA</td>
<td>V/ C</td>
<td>T/T</td>
<td>T/S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

NACA 機翼翼型

GOOSEACAT 80 around FAR FAR 極限距離

89, 219 OEL 91 109 NASA

253 251 250 249 247 246 245 244 243 242 241 242 241 240 239 238 237 236 235 234 233 232 231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 209 208 207 206 205 204 203 202 201 200 199 198 197 196 195 194 193 192 191 190 189 188 187 186 185 184 183 182 181 180 179 178 177 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

<table>
<thead>
<tr>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA</td>
<td>V/ C</td>
<td>T/T</td>
<td>T/S</td>
</tr>
<tr>
<td>TCA</td>
<td>V/ C</td>
<td>T/T</td>
<td>T/S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

283
著者略歴
1982年 東京大学工学部航空学科卒業
1984年 東京大学大学院工学系研究科修士課程修了（航空学専門課程）
1984年 東京大学助手
1988年 工学博士（東京大学）
1988年 科学技術庁航空宇宙技術研究所勤務
1993年 東京大学助教授
2004年 東京大学教授
現在に至る

航空機設計法
——軽飛行機から超音速旅客機の概念設計まで——
Aircraft Conceptual Design
—as from Light Aircraft to Supersonic Transport— © Kenichi Rinoie 2011

2011年12月20日 初版1刷発行
2013年6月5日 初版2刷発行

発行
株式会社 コロナ社
CORONA PUBLISHING CO., LTD.
Tokyo Japan
振替 00140-8-14844 電話 (03) 3941-3131 (代)
ホームページ http://www.coronasha.co.jp

ISBN 978-4-339-04619-9 (横尾) (製本：愛千製本所)
Printed in Japan