「微分積分学」 正誤表 このたびは本書をお買い上げいただき、誠にありがとうございます。本書には下記のような誤りがありました。ここに訂正し、誰んでお詫び申し上げます。

し、謹ん	でお詫び申し上げます。		
頁	箇所	誤(下線部)	正(下線部)
4	3行目	R/it···	実数全体の集合Rは・・・
6	下から2行目	…また、 $r \ge 2$ のとき…	…また, r>2のとき…
22	5行目	$ x+3 \leq (x-3)+6 \cdots$	$ x+3 = (x-3)+6 \cdots$
36	【解答】(5)	・・・例題2.6(1)を用いて・・・	・・・例題2. <u>2</u> (1)を用いて・・・
44	【解答】文頭	$f(x) = \cdots$	$x > 1$ のとき $\sin x < x$ は明らか 0 $< x \le 1$ のとき $f(x) = \cdots$
49	10行目	$ \cdots \lim_{n \to 0} a_n = \beta $ とおき、…	\cdots $\lim_{n\to\infty}a_n=\beta$ とおき、…
50	【解答】6行目	···=1.623···	=1.623 <u>1···</u>
53	下から6行目	<u>平均値</u> の定理の復習	<u>ロール</u> の定理の復習
54	証明 7行目	したがって <u>平均値</u> の 定理から・・・	したがって <u>ロール</u> の 定理から・・・
57	最下行	$+\frac{x^7}{7!}$	$-\frac{x^7}{7!}$
69	下から3行目	例えばつぎの節の定理3. <u>8</u> を 用いて示される.	例えば <u>例3.12と</u> つぎの節の定 理3. <u>10</u> を用いて示される.
87	4行目	\cdots $S(\Delta, T)$ は \cdots	$\cdots S(\underline{f}, \Delta, T)$ l $\sharp \cdots$
101	2行目	・・・ の長さ <i>L</i> は	…の長さL <u>(C</u>)は
122	6行目 8行目 10行目	$\frac{\Delta x^2}{\Delta y^2}$	$\frac{\left(\Delta x\right)^2}{\left(\Delta y\right)^2}$
128	例5.13の 3行目	···, C¹級の逆写像···	···,局所的に <i>C</i> ¹ 級の逆写像
149	定理6.1 1行目	有界 <u>閉集合</u>	有界 <u>領域</u>
150	5行目	$\sum_i f(\xi_{ij}, \eta_{ij}) \Delta x_i$ の極限は、 \cdots yを定数と \cdots	j を固定し $\sum_{i} f(\xi_{ij}, \eta_{ij}) \Delta x_{i}$ の $m \to \infty$ としたときの極限は、
155	5行目	$\frac{4y^{2/5}}{\pi}$	…yをほぼ定数と… <u>4y^{5/2}</u>
		$\int_{a}^{a} \int_{a}^{\pi} -r^{2} + 1 ds$	$\int_{-\frac{\pi}{2}}^{\pi} \int_{-r^2}^{a} dr dr$
160	下から9行目	$\cdots = \int_0^a \int_0^{\frac{\pi}{2}} e^{-r^2} r dr d\theta = \cdots$	$\cdots = \int_0^{\frac{\pi}{2}} \int_0^a e^{-r^2} r dr d\theta = \cdots$
174	例題6.16	楕円 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2}$ ···	精円 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ···
176	問題【9】	$V = \{(x, y) \cdots$	$V = \{(x, y, \underline{z}) \cdots$
207	下から7行目	2変数の場合の証明を,・・・	2変数の場合, $x(u,v),y(u,v)$ が C^2 級で, ・・・
207	下から5行目	<u>C</u> ¹ 級	<u>C</u> ² 級
212	解答【11】 (2)	$\underline{x^{2x}}$	e^{2x}
212	解答【17】 (2)	…をe ^x > <u>1</u> に注意…	…をe ^x > <u>0</u> に注意…
214	解答【9】 (1)	$\frac{1}{\sqrt{x^2+1}}$	$\frac{1}{\sqrt{x^2 + a}}$
217	解図2.1 グラフの y 軸の値	$\frac{1}{e}$	<u>1</u> e
224	解答【18】 (1) [ヒント]	$\underline{x} = \underline{u} + \underline{v}, \underline{y} = \underline{u} - \underline{v}$	$\underline{u} = \underline{x} + \underline{y}, \ \underline{v} = \underline{x} - \underline{y}$
		1	1