無線通信工学の基礎と演習

 博士(工学)
 吉
 野
 純
 一
 編著

 博士(理学)
 山
 下
 幸
 三

 博士(工学)
 吉
 田
 将
 司
 共著

 博士(工学)
 斉
 藤
 成
 一

まえがき

電気通信の幕開けは電信の分野で始まり、ついで電話へと発展していった。 1890年(明治23年)12月16日、東京155加入、横浜42加入の加入者を対象 として東京一横浜間で日本の電話事業はスタートし、その後驚異的な進展を示 した。120年以上たった今日は、携帯電話に代表される移動通信を始め、あら ゆる場面で通信というものが生活の中に混在し、子供から高齢者に至るまでど の世代でも使用する身近な存在となった。

このように華々しい電気通信の発展を支えてきた電気通信技術の分野では技術革新の進歩がきわめて早く、新技術が続々と実用化されている。このため、その全貌を把握することが近年ますます困難になりつつある。本書はこのような認識の上に立って、無線通信を中心として、基礎から無線装置設計までを演習を通じて体得してゆく今までの通信工学の本にないスタイルの教科書として執筆した。また、本書は、初めて通信工学を学ぼうとしている高専、大学の学生を意識して書かれたものであることはもちろんであるが、すでに通信工学を一度は学んでいても、実感として理解できなかった人にとっても復習書として最適である。さらに企業の設計技術者にとっては参考書として役立つものである。

本書の構成は、1章で有線・無線通信の歴史、有線・無線通信技術についての基礎を述べ、2章では電波伝搬のさまざまな現象説明、マックスウエルの電磁方程式、3章では無線装置の構想設計として、通信回線設計、アナログ・デジタル変調方式、通信路の多重化について述べている。4章、5章は無線装置詳細設計として、分布定数回路、伝送線路、アンテナ、ノイズ、EMC設計について述べている。これらの各章は、いずれも例題を通じて理解することを念頭に置き、さらに各章に章末問題を設けて、より理解が深まるようになってい

ii ま え が き

る。例題や章末問題の解答はできる限り読者の理解が深まるよう丁寧に執筆した。

この本を使用する読者が、高度情報化社会を支える 21 世紀の通信工学の発展に大きく貢献されることを心から期待するところである。最後に本書の執筆出版にあたり、構想から目次作成、執筆終盤まで大変お世話になったコロナ社の方々に感謝する次第である。

2014年7月

編著者 吉野 純一

目 次

1. 序 論

1.1 通信の目的と電気通信	
1.2 通信の歴史・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.2.1 電気通信の年表・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.2.2 電気通信に活躍した人びと・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.2.3 有線通信の歴史・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.2.4 無線通信の歴史・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
1.3 通信系のモデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•••••7
1.4 通信技術の基礎・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1.4.1 有線通信技術 · · · · · · · · · · · · · · · · · · ·	9
1.4.2 無線通信技術	
1.5 通信ネットワーク	30
章 末 問 題	31
章 末 問 題	31
2. 電 波 伝 搬 2.1 マックスウェルの電磁方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
2. 電 波 伝 搬 2.1 マックスウェルの電磁方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	······33
2. 電 波 伝 搬 2.1 マックスウェルの電磁方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	······33
2. 電 波 伝 搬 2.1 マックスウェルの電磁方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	······33 ·····34 ····35
2. 電 波 伝 搬 2.1 マックスウェルの電磁方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33 34 35
2. 電 波 伝 搬 2.1 マックスウェルの電磁方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3334353638
2. 電 波 伝 搬 2.1 マックスウェルの電磁方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3334353638
2. 電 波 伝 搬 2.1 マックスウェルの電磁方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	333435363840

iv	目	次	
2.3 電	波伝搬の基礎 …		49
2.3.1	電波伝搬の様式		49
2.3.2	電波伝搬におけ	る諸現象・・・・・・・・・	51
章末	問 題		56
	;	3. 無線装置の	構想設計
3.1 仕	様の検討…		58
3.2 通	信回線設計…	• • • • • • • • • • • • • • • • • • • •	59
3.2.1	回線計算の基本	モデル・・・・・・・・・・・・・・・・・・	59
3.2.2	アナログ通信の	可線計算・・・・・・・・・・・・・・・	61
3.2.3	ディジタル通信の	の回線計算・・・・・・・・	64
3.3 ア	ナログ変調方式・		67
3.3.1	振幅変調	•••••	67
3.3.2	周波数変調	• • • • • • • • • • • • • • • • • • • •	70
3.3.3	位相変調	• • • • • • • • • • • • • • • • • • • •	••••••••••
3.4 デ	イジタル変調方式	戋	73
3.4.1			75
3.4.2			76
3.4.3			78
3.4.4	QAM · · · · · ·		81
3.5 通			81
3.5.1			81
3.5.2			83
3.5.3	CDMA		85
章末	問 題		87
	4.	無線装置の詳	細設計(1)
4.1 回	路基板設計…		89
4.1.1	分布定数回路	• • • • • • • • • • • • • • • • • • • •	89
4.1.2	伝 送 線 路	•••••	92
4.2 T	ン テ ナ…		101

			次	V
4.2.1	電磁波の発生・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			• 101
4.2.2	アンテナの基礎			• 104
4.2.3	指向性アンテナ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			• 117
章末	問 題			· · 125
	5. 無線装置の詳	:細設計 (2)		
5.1 ノ	イ ズ			• 126
5.1.1	ノイズと EMC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		• • • • • • • • • • • • • • • • • • • •	• 126
5.1.2	ノイズの種類		• • • • • • • • • • • • • • • • • • • •	• 134
5.1.3	受信システムにおける SN 比と雑音	指数 • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••145
5.1.4	シャノンの定理と変調方式			·· 150
5.2 EM	MC 設 計······			• 156
5.2.1	グラウンド・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			• 156
5.2.2	シールド・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			• 163
5.2.3	シグナルインテグリティ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			·· 174
章 末	問 題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・			· 181
参考	文 献			• • 189
章末問	引題解答⋯⋯⋯⋯⋯ ⋯⋯			• 192

索

1 序 論

通信は、会話、文章、画像などにより相手に情報を伝達することをいう。この伝達する技術には有線通信と無線通信があるが、今日の無線通信の発展は目覚ましいことである。この電波を用いた無線通信は、われわれの日常生活にとって欠かせないものとなっている。これらの技術を考えるにあたり、本章では、通信工学の目的、通信の歴史、有線通信、無線通信の基本技術について述べ、全章の基礎部分を例題、演習を通じて学ぶ。

1.1 通信の目的と電気通信

通信(communication)とは、もともと人と人とが意志(will)や情報(information)を伝達(communicate)することである。複数による会話は、音声通信の始まりといえるが、離れた場所での通信には、古くは「太鼓の音」や「のろし」などのように聴覚や視覚といった人間の五感へ刺激を与えるような合図を送る方法も用いられていた。文字による情報伝達手段としての郵便も古くから行われ、人や馬、近代になっては汽車、船、航空機など各種輸送機関によって手紙を送るこの方法は、現代もなお通信の一手段として利用されている。

これらの通信方法は、情報を伝達できる距離に制限があり、伝達に非常に時間がかかるのが最大の欠点であった。人は距離と時間との制約を克服して、どんな距離でも直ちに通信できることを望んだ。この目的に最も合致するのが、

電気を用いて情報を伝達する電気通信である。導線を流れる電流や空間を伝搬する電磁波を伝達の手段として使うので、遠距離でもほとんど瞬時に情報を伝達できる。電気通信は電信、電話の発明以来、急速な発展を遂げ、特に最近の携帯電話に代表される目覚ましい進歩によって、現在では地球上あるいは宇宙空間を含めて実時間の通信が可能となっている。

広義の通信の代表的なものは、アナログ的な郵便とディジタルな電気通信であるが、現代の通信の中ではディジタル通信は日常の社会生活において最も身近で重要な位置を占めている。一般に通信工学と呼ばれるものは、このディジタル通信に関する工学である。また、「人と人とを結びつける」ことを助ける工学ともいえる。

1.2 通信の歴史

電気は導体の中や空中を何よりも速く伝わる性質がある。この性質を利用して行われる通信が電気通信である。その歴史は、モールスによる 1885 年のモールス電信の発明後、急激に進歩した。現在の電気通信は、電話をはじめとして放送、インターネット、宇宙通信など、さまざまな分野で利用されているが、ここでは電気通信の発展に寄与した人びとについて理解を深め電気通信の流れを簡単に述べる。

1.2.1 電気通信の年表

表1.1 は、電気通信に関した発明などをまとめたものである。モールス電信以前にも、ホイートストン、クックらによってさまざまな通信方法が考えられ、実際にも使われていた。

表1.1 おもな電気通信年表

年		項目	日本の出来事	世界の出来事
1831	ファラデー	電磁誘導現象発見		
1837	モールス	モールス式電信機を組み立て		
		公開実験		
	クックとホイース	ストンが5針式電信機を発明		
1840	ホイートストン	ABC電信機を発明		アヘン戦争始ま
				る
1851	フレッド	ブレット兄弟が英仏海峡(ドー		
		バー海峡)に海底ケーブル敷		
		設(初の海底ケーブル敷設)		
1853			ペリー浦賀来航	
1855	ヒューズ	印刷電信機を発明		
1860			桜田門外の変	南北戦争始まる
				(1861年)
1866	大西洋海底ケース			
1868	ステアンズ	同時通信式電信機を発明	(明治1)明治維新	
1869			東京-横浜電信業務開始	
1876	ベル	実用的電話開発		
1888	ヘルツ	電磁波存在確認		
1889	ストロジャ	自動交換機開発	東海道線全通	
1890		A MARKET IN LOT TO	東京-横浜電話業務開始	
1895	マルコニ	無線通信方法開発	日清戦争(1894年)	
1900	プーピン	装荷ケーブル開発	H = 100 (100 (10)	
1904	フレミング		日露戦争(1904年)	
1906	ド・フォレスト			65- V. III III I. V.
1910	スクウェア	搬送方式開発		第一次世界大戦
1000	1.0 1.01.01			(1914年)
1920	ヒッツバークに†	世界最初の放送局	本字# ※ 口に# ※ 間 W	
1925		-1 12/7FAPT4 (- 19 1 + P)	東京放送局仮放送開始	
1926	ベアド	テレビ実験成功(ニポウ方式)	浜松高等工業学校の高柳	
			健次郎が浜工式テレビ	
1937	ノギリフ DCC ニ	レビの世界初放送	ジョンの開発に成功	
			十元学》·4 (1041 年)	然一分世田十岁
1938	'' - ' / \	PCM 方式開発	太平洋戦争(1941年)	第二次世界大戦 (1939年)
1945	 電子計算機第一号	之間 A (ENHAC)		(1909 十)
1945		テ囲光(ENIAU) トランジスタ開発	NHK. テレビ実験	
1948		トノンスタ研究 □衛星打ち上げ(スープトニク)	,	
1907	/ 建世介物の八_	L 生1]り上り(ヘーノトーク)	/ レロ	

1.2.2 電気通信に活躍した人びと

現在ある電気通信は、数多くの人びとの研究によって発達してきた。ここで は、その中から代表的な5人の生い立ちや業績について簡単に述べる。

[1] ファラデー

マイケル・ファラデー (Michael Faraday, イギリス, 1791年9月22日~

図1.1 マイケル・ファラデー

1867年8月25日、図1.1)は、父は鍛冶屋である。子供のころ製本屋で働き、そこで本に接する。20歳を過ぎたころ、科学者H.デービーの助手となり、科学者への道を歩み始める。20歳後半から力を認められるようになり、34歳の若さで王立研究所の所長となる。初めは科学に興味を持ち、特に電気分解に関して大きな業績を残している。その後、電気に興味が移り、「電流を利用して機械力を作

ること」に成功したのを皮切りにして、電磁誘導現象の発見にまで至った。晩年 は光と電気との関係なども研究したが、宗教上の問題などで寂しい年を送った。

[2] モールス

サミュエル・フィンリー・ブリース・モールス(Samuel Finley Breese Morse, アメリカ, 1791 年 4 月 27 日~1872 年 4 月 2 日, $\mathbf Z$ 1.2)は画家であっ

た。また、政治にも興味を持っていたが、40 歳近くになって友人ジャクソンの影響を受け、電気、特に電信事業に興味を持つようになり、モールス電信を発明した。モールス電信は現在でも利用されているが、文字を長短の符号の組合せに直し、この長短に合わせて電流の断続を行って通信を行うものであり、当時としては画期的な発明であった。この開発に関する電気の知識は、ヘンリーから短期間で学んだようであり、さらに持ち前の努力

図1.2 サミュエル・フィンリー・ ブリース・モールス

と政治力を発揮して通信方法を発明しただけでなく、電信会社の設立も行った。

(3) ベル

アレクサンダー・グラハム・ベル (Alexander Graham Bell, アメリカ, 1847 年 3 月 3 日 \sim 1922 年 8 月 2 日, \mathbf{Z} 1.3) は、イギリスにおいて、言語や音声

の研究家として伝統のある家に生まれた。 1871年アメリカに渡り、ボストン大学で発声 生理学を教えるようになったことから機械に よる音声を研究するようになり、ついに 1876 年、電流によって鉄板を振動させ、音波を出 すことに成功した。すぐに特許を取ったベル は、同年フィラデルフィアでのアメリカ独立 百年祭にこの電話機を出したため、この発明 はすぐに世界へ広がるようになった。その

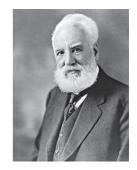


図1.3 アレクサンダー・ グラハム・ベル

後,ベル電話会社を設立し、電話産業に力を入れたが、同じアメリカ人のエジ ソンのいるウエスタンユニオン社といろいろな面で競争するようになった。

[4] マルコーニ

グリエルモ・マルコーニ (Guglielmo Marconi, イタリア, 1874年4月25日

図1.4 グリエルモ・マルコーニ

~1937年7月20日, 図1.4) は富裕な家庭に育った。物理学を学ぶうちに、ヘルツの発見した電磁波に興味を持ち、通信に利用することを考えた。初めの装置は簡単なものであり、通信距離も家の中から庭先までというものであったが、しだいに距離を延ばすことに成功し1898年には約30kmの通信に成功している。このころから通信を営業用に用いることを考え、さらに1901年には地球上の見

えない所への無線通信にも成功するまでに改良した。

〔5〕 フレミング

ジョン・アンブローズ・フレミング (Sir John Ambrose Fleming, イギリス, 1849年11月29日~1945年4月18日、図1.5) は、牧師の子として生まれた。大学時代にマックスウェルのもとで電気実験をいろいろと試みていた。その後、1880年代にはエジソン社の顧問となり、電灯工業の発達について研究

図1.5 ジョン・アンブローズ・ フレミング

をし、さらに 1890 年代にはマルコーニとともに無線通信についての共同研究を始めている。この 2 人の研究を手伝う中からエジソンの発見した「エジソン効果」とマルコーニの「無線検波器」を結び付けようとフレミングは考え、有名な 2 極管の発明をした。しかし、この 2 極管も検波器としては、当時の電解式検波器よりも感度が悪いものであった。

1.2.3 有線通信の歴史

有線通信方式は、裸線・平衡ケーブル・同軸ケーブルあるいは光ファイバケーブルなどの有線媒体を通して、遠隔地へ情報を伝送する方式である。その幕開けは電信の分野で始まり、ついで電話へと発展していった。当初は鉄線、つぎに銅線を電柱に架設した裸線路が用いられたが、裸線は自然にさらされていて風雨その他の影響を受けやすく、安定した通信を提供するには不適当であった。その後、この欠点を改良した各種のケーブルが発明され、現在広く使われている。また、これと並行して伝送線路の有効利用を図るため、一対の導体を通して複数の信号を伝送する多重伝送方式が開発された。多重化の方法は、周波数分割多重(frequency division multiplex、FDM(アナログ方式))と時分割多重(time division multiplex,TDM(ディジタル方式))とに大別される。FDMによる電話伝送は搬送電話とも呼ばれている。

1.2.4 無線通信の歴史

無線通信方式は、電波を利用して遠隔地へ情報を伝送する方式である。電波とは空間または伝送路内を伝搬していく電磁波のことであり、一般には電磁波の波長の長い部分(0.1 mm 以上)を電波という。今日、無線通信はわれわれの日常生活にとって欠かせないものとなっており、テレビジョンやラジオを始め、携帯電話、航空機・列車電話、さらにインターネットなどの移動体通信と

索引

【あ】		拡張されたアンペ 周回積分の法則		コンスタレーションコンダクタンス	,
アクティブ・フェー	ズド・	過渡ノイズ	127, 139	混変調	141, 143
アレイ・アンテナ		加法性通信路	9		,
アーク放電		雷放電	138	【さ】	
アース	156, 157	貫通電流	142	サイドローブ	29
アレイアンテナ	119			左旋円偏波	117
アンテナ	101	【き】		雑音	126
――の効率	107	危険防止	157	雑音温度	149
アンテナ素子の指向]性関数	疑似雑音符号	86	雑音指数	145
	119	基準点	157	雑音入力電力	146
アンペールの法則	101	基本波	132	残留側波带	20
T ₁ ×1		逆拡散	86	7: 1	
[(1)]		逆相配列	120	[L]	
位相定数	103	共役インピーダン	ス整合 108	シェルクノフ	171
位相変調	67	共通インピーダン	ス 159	――の理論	171
位相変動	144	近傍界	164	磁界	164
1 点グラウンド方式	161	近傍電磁界	103	時間領域	130
イミュニティ	126	[<]		磁気シールド	163, 168
インピーダンス	94	1 1		磁気抵抗	168
インピーダンス整合 108,174				シグナルインテグリ	ティ
【う】		空間多重化	155		145, 174
		グラウンド	156, 157	指向性の積の原理	119
渦電流	169	グラウンド強化	160	指向性利得	109
右旋円偏波	117	クロストーク	13, 14, 142	自己妨害	13
【え】		【け】		自然ノイズ	126, 134
					, 144, 179
エンドファイア配列		結合波	14	時分割多元接続	81
アンテナ	121	(こ)		時分割複信	81
円偏波	116			遮断周波数	100
遠方界	164, 171	高域通過フィルタ		シャノン	
遠方電磁界	103	光速度	100	の通信システ	
【か】		広帯域伝送	175	モデル	8
	0.1	高調波	132	――の通信路容量	
回転	34	高調波スプリアス			
外来ノイズ	134	高調波ひずみ	143	自由空間	26, 101
拡散	86	コプレーナ導波路	99	終端インピーダンス	145

集中定数回路	90	全高調波ひずみ率	143	[7]	
周波数ドメイン	130	【そ】			
周波数分割多元接続	81		170	低域通過フィルタ	15
周波数分割多重伝送		相互インダクタンス	170	低周波コモンモード	
周波数分割複信	81 67		41, 143	データ依存性ジッタ	
周波数変調 周波数ホッピング方		送信機 相対利得	8 109	デターミースティッ ジッタ	145
	130		109	ンツタ デリンジャー現象	145 27
周波数領域	142	挿入位相量	11		164
充・放電電流		挿入減衰量 ජ 1 世	11	電圧性の発生源	95
16 値 QAM 妥信或度	155	挿入損 		電圧反射係数	
受信感度 受信機側	62 8	増幅器雑音	136	電位の基準点 電界	156 164
文后候侧 情報源	8	【た】		电介 電界による誘導	164
^{頂報/你} 処理利得	86	 帯域阻止フィルタ	15	電磁界に対する	107
処理利得 ジョンソンノイズ	135	帯域通過フィルタ	15	電磁シールド	169, 171
磁力線	168	市域通過フィルタ 帯域幅	150	電磁環境の両立性	109, 171
シールド	163	台形パルス波形	131	電磁果場の両立住電磁干渉に対する原	
	172	大地接地	157	電磁シールド	163, 169
シールド壁	172	大地電位	157	電磁ノイズ干渉	126
信号空間ダイアグラ		大地反射波	27	電磁波	165
信号対ノイズ比	127	ダイバーシチ	28	電磁誘導による	100
	134, 138	タイムドメイン	130	電磁シールド	169
信号ひずみ	143	対流	25	電磁誘導の法則	101
振幅位相変調	74	対流圏	25	伝送関数	10
振幅変調	17, 67	多重通信	8	伝送線路	92
	=-,	多点グラウンド方式	161	伝達関数	10
【す】		単一伝送路	155	伝導電流	40
スタブ	178	単位標本化関数	22	伝搬波長	103
ストークスの定理	101	単側波帯振幅変調方式	19	電離圏	25
ストリーム	155	7.7.		電離圏伝搬	27
ストレー容量	178	【ち】		電離層	25
スプリアス	144, 174	遅延線路	124	電流性の発生源	164
スレッショルド	128	蓄積電磁界	103	1.1	
7 (6)		地表波	27	(と)	
【せ】		直接拡散方式	85	等価雑音温度	149
正弦波	131	直接波	27	動作位相量	12
整合	145	直線ひずみ	14	動作減衰量	12
整合回路	108	直線偏波	116	動作伝送量	11
成層圏	25	直交振幅変調	81	同軸ケーブル	97, 98
静電界	102	[7]		透磁率	169, 171
静電気放電ノイズ	137			導磁率	171
静電シールド	163, 167	通信	1	同相配列	117
絶対利得	29, 109	通信路	8	導体損	179

導電誘導 導電率	159 169, 171	[v]		[ほ]
導波管	100	微小ダイポール	164	放射抵抗 106
特性インピーダンス	ζ	微小ダイポールアンテ	ナ 102	放射電界 102
9	4, 145, 174	微小ループ	164	放射電界強度 109
14.1		非直線ひずみ	14	放射電磁界 103, 164, 171
【な】		ビット誤り率	151	ホワイトノイズ 134
内層グラウンド平面	ī 158	比誘電率	99	/ + 1
内部ノイズ	134	表皮効果	179	【ま】
【ね】		表皮深度	179	マイクロストリップ線路 99
[14]		標本化	21	マイクロ波 99
熱雑音	134	標本化周波数	22	マージン 62
[の]		標本化パルス	21	マルチパスフェージング 51
ノイズ	126	[ふ]		[み]
ノイズ耐性	126	フェージング	27	ミリ波 99
ノイズマージン	128	フェーズド・アレイ・		
71		アンテナ	124	【む】
【は】		負荷インピーダンス	94	無雑音の抵抗 135
背景雑音	13	復調	8, 67	無指向性点放射源の
配列アンテナ	119	符号分割多元接続	81	配列の指向性 119
配列係数	122	フーリエ級数展開	131	無線周波数信号 130
白色雑音	134	フリスの伝達公式	60	[Ø]
波形ひずみ	174	ブロードサイド配列		[20]
波形品質	174	アンテナ	119	メインビーム 29
発散	34	分岐	178	メッセージ 8
波動インピーダンス		分布定数回路	90, 174	[ゆ]
波動方程式	102	[^]		
パーマロイ	169		07	誘電正接 179
パルス信号 ――のジッタ	1.45	平行線路	97	誘電損 179
のシッタ のひずみ	145 145	平面波 並列空間伝送路	103 155	誘導結合103誘導的91
	175	业列至同仏送路 ベクトル波動方程式	47	誘導電界 102
パルス波	131	ベースバンド	151	誘導電磁界 103, 164, 169
パルス符号変調方式		ベタ・グラウンド	158	有能雑音電力 135
反射	145, 174		40, 101	
反射係数	175	変調	8, 67	(よ)
搬送波	8, 67, 151	変調指数	71	容量結合 103, 167
搬送波抑圧振幅変訓	, ,	変調度	68	容量的 91
半波長ダイポールア		変調方式	152	余裕 62
		偏波	116	151
		偏波面	116	[6]
				ランダム・ジッタ 145

[9]		量子化ひずみ リンクバジェット	23 58	[3]
リアクティブ電磁界	103	[れ]		漏えい同軸ケーブル 99
リップル	133		0.5	漏話 13, 142
量子化	23	レッヘル線	97	
量子化雑音	23	レベルダイヤグラム	12	
		>	$\overline{}$	>
[A]		EMS	127	(N)
ACG	158	(F)		noise 126
AM	67	FDD	81	noise margin 128
Ampere の法則	101	FDMA	81	
APK	74	FG	158	[O]
array	117	FH-SS 方式	85	OFDM 155
ASK	74, 153	FM	67	(P)
[B]		Fourier series expansion	131	(P)
[D]		FSK	74	PM 67
band elimination filter		[G]		PN code 86
band pass filter	15			PSK 74, 153
BER	151	GMSK	78	[Q]
bps	150	GPS	117	_
BPSK	153	(H)		QAM 81
(C)			15	QPSK 154
carrier	67	high pass filter	13	(R)
CDMA	81	(I)		radio frequency signal 130
CN	151	immunity	126	RF 信号 130
CN比	127	_	120	rotation 34
communication	1	[J]		
conduction current	40	jitter	143	(s)
crosstalk	13	Johnson noise	135	Schelkunoff 171
/nl		7-1		SG 158
[D]		(L)		shield 163
demodulation	67	link budget	58	SN 150
displacement current	40	low pass filter	15	SNR 145
divergence	34	(M)		SN 比 127, 145
DS-SS 方式	85	[141]		Stokes の定理 101
DSB	69	margin	62	(T)
(E)			, 155	
		MMIC	99	TDD 81
EMC	127	modulation	67	TDMA 81
EMI	126	MSK	77	

─ 編著者・著者略歴および執筆分担 ─

じゅんいち **純 一** (1章) 吉 野

1987年 東京農工大学工学部電気工学科 卒業

1987年 日本無線株式会社勤務

1992年 育英工業高等専門学校講師

2000年 工学院大学大学院修士課程修了 (電気・電子工学専攻)

2005年 博士(工学)(工学院大学)

2007年 サレジオ工業高等専門学校准教授 (電子工学科)

2013年 サレジオ工業高等専門学校教授 (機械電子工学科) 現在に至る

2008年 (社) 日本工学教育協会 中級教育士 (工学・技術)

2013年 (社) 日本工学教育協会 上級教育士(工学・技術)

ましだ まさし 吉田 将司 (3章)

2001年 東京商船大学商船学部流通情報 工学課程卒業

2006年 東京商船大学大学院博士後期課 程修了

2006年 博士(工学)(東京商船大学)

2006年 サレジオ工業高等専門学校講師 (電子工学科)

2014年 サレジオ工業高等専門学校准教授 (機械電子工学科) 現在に至る

1973年 早稲田大学理工学部電子通信学科 卒業

1973 年 三菱電機株式会社勤務

2000 年 東京農工大学大学院工学研究科 博士後期課程修了 (生産システム工学専攻) 博士(工学)(東京農工大学)

2010年 サレジオ工業高等専門学校教授 (専攻科)

2012年 サレジオ工業高等専門学校 客員教授 (専攻科) 現在に至る

やました **山 下** 幸三 (2章)

2006年 電気通信大学電気通信学部 雷子丁学科卒業

2008年 電気通信大学大学院電気通信 研究科博士前期課程修了

(電子工学専攻)

2011年 東北大学大学院理学研究科博士 後期課程修了(地球物理学専攻)

2011 年 博士(理学)(東北大学)

2011年 サレジオ工業高等専門学校助教

(電気工学科)

2014年 サレジオ工業高等専門学校講師 (電気工学科) 現在に至る

みずたに ひろし **水谷 浩** (4章, 5.1.4項)

1986年 京都大学工学部石油化学科卒業

1988年 京都大学大学院工学研究科修士 課程修了(分子工学専攻)

1988 年 日本電気株式会社 勤務

2007年 株式会社ヨコオ 研究開発部長

2007年 電気通信大学大学院電気通信学 研究科博士後期課程修了 (情報诵信工学専攻)

2007年 博士(工学)(電気通信大学)

2012年 サレジオ工業高等専門学校教授 (電気工学科)

現在に至る

2014年 (社) 日本工学教育協会 上級教育士(工学・技術)

無線通信工学の基礎と演習

Wireless-communications engineering — Fundamentals and Exercises —

© Jun'ichi Yoshino 2014

2014年10月16日 初版第1刷発行

 \star

編著者 吉 純 Щ 下 幸 者 \mathbb{H} 司 水 谷 吝 藤 成 株式会社 コロナ社 発行者

検印省略

代表者 牛来真也

萩原印刷株式会社 印刷所

112-0011 東京都文京区千石 4-46-10

株式会社 コロナ社 発行所

CORONA PUBLISHING CO., LTD.

Tokyo Japan 振替 00140-8-14844 · 電話 (03) 3941-3131 (代)

ホームページ http://www.coronasha.co.jp

ISBN 978-4-339-00865-4 (森岡) (製本:愛千製本所)

Printed in Japan

本書のコピー, スキャン, デジタル化等の 無断複製・転載は著作権法上での例外を除 き禁じられております。購入者以外の第三 者による本書の電子データ化及び電子書籍 化は、いかなる場合も認めておりません。

落丁・乱丁本はお取替えいたします