### まえがき

数学と物理が得意であるはずの理工系学部や高専の学生にとっても、電磁気学は難解であると思われて不人気の科目の1つである。その原因は2つあると考えられる。1つは電磁気で扱う物理量が '目に見えない' ことによるイメージ形成の困難さである。力学における物体の落下や慣性の法則などは日常よく経験することであり、常識として感覚的に受けいれることができる。しかし、電磁気学が対象とする電荷や電流のイメージを描くことは、初めて電磁気学を学ぶ学生にとっては難しい。常識とは一種の '慣れ' だからである。さらに、電磁気学で初めて登場する電界や磁界といった '場の概念' は日常の世界とあまりにもかけ離れている。もう1つは、電磁気学で用いられる数学である。電磁気学に限らず物理現象を正確に記述するには数学が不可欠ではあるが、多くの初学者にとってはそれに気をとられて数式の表す物理的内容を見失ってしまう。このため、どちらに重きを置くかによって '講義の数だけ教科書がある' というくらいたくさんの教科書が出版されている。

前者の電磁気学的イメージ形成に重点をおく教科書は確かにわかったような気にさせてく れるが、いざ実際の問題に直面するとそれを解決するための手がかりが乏しいことに気づか される.また,電気力線や磁力線は理解の助けにはなるが物理現象を正確に表すものではな い. これに対して後者の教科書では, 一見難しそうな数式が並んでいるため, 最初から '食わ ず嫌い' の状態に陥ってしまう.また,数式の物理的意味を理解するには少なからず経験を 積む必要があり、初学者にとってやはり高い壁になる。筆者らも決してスムーズに乗り越え てきたわけではなく教科書を何度も読み返した記憶がある.このとき役に立ったのは,丁寧 な説明と理解を助ける演習問題であった.要点をまとめた教科書や公式集は、いったん理解 した読者には使いやすいが、初心者は行間を埋めるべき講義のペースについていけないこと もあり、単なる式の暗記に追われて、結局本質をつかむ機会を失うことがある.このような 経験から,冗長との批判を覚悟してできるだけ丁寧な説明を心がけた.また読者がつまずき そうな部分には例題とその詳細な解答を付け加え,何度読み返してもそれに耐え得る教科書 になるよう努力した、欧米では決して珍しくないが、本書のような出版社泣かせの厚い本を 出版させていただいたのは、偉大な先人達が築き上げた電磁気学的自然観とそれを集約した 自然法則の意味をよく理解すると共に、専門分野に進むための知識や問題解決能力を身に付 けてほしいという願いからである.また,電磁気学がどのように形成されていったかを伝え るための歴史的事情や、電磁気学が現代生活にどのように生かされているかについても簡単 に紹介した. 息抜き程度に読んでいただきたい.

本書は理工系学部や高専の学生向けの教科書・参考書として執筆されたもので、電磁気学 的イメージの把握を重視しながらも、高校卒業程度の数学的知識があれば導かれた数式の物 理的意味が正確に理解できるように工夫されている.2章では電磁気学を学ぶために必要な 最小限度の数学的事項をまとめた、多くの大学や高専ではベクトル解析の講義もほとんど同 時期に行われているであろうから、これらに習熟していると思う読者は読み飛ばしても差し 支えない.また,初学者にはやや高度であると思われる節,項にはそのタイトルに \* マーク を付けた.必要に応じて取捨選択してほしい.その後は電荷の運動という観点から,わかっ た歴史の順番に沿って述べられている.3章から5章までは、電荷が静止している場合に空 間にどのような電界ができるかを説明している. '場'という概念が最初に登場することから、 それについて詳しく説明している.3 章は自由空間中の電界について,4 章は誘電体中の電 界と分極について説明する. また 5 章はやや数学的色彩が強いが, 静電界の問題を解く正統 的な手法であることと、物性の分野では最初からこのような取り扱いをすることが多いため、 章を改めて解説した.初学者は必要な部分だけを選んで読んでほしい.電荷が移動すると電 流になるが、6章は最も簡単な定常的に流れる電流の性質を述べている。電流が流れると周 りに磁界ができることは周知の通りである. 7章と8章は定常電流による磁界と磁性体によ る磁界について述べた章である.9章からは、電荷が加速度運度して電界と磁界が共に時間 的に変化する場合を扱うが、9章はその変化が緩やかな場合にどのような現象が起こるかを 説明する.そして 10 章でマクスウェルの方程式という電磁界を規定する方程式にたどり着 いて、いわゆる古典電磁気学が完成する。これで電磁気学は一応完結するが、電磁気学と電 気回路や電子回路とは別の分野だと考えている学生も少なくないため,11 章をあえて付け加 えた、この章ではマクスウェルの方程式をどのような条件の下で近似すると回路方程式が導 かれるかを説明して、電磁気学と電気回路との橋渡しを行う...

最後に本書は、いろいろな方々からのご協力、ご支援によって完成することができた.いままでに出版されているさまざまな書籍や学術論文もまた参考にさせていただいた.主なものは巻末に載せた.有益なご助言をいただいた大学の同僚、電子情報通信学会をはじめとする各種研究専門委員会の委員の皆さんに感謝する.また、この本の基礎となった講義ノートのミスプリントや講義に関する貴重な意見を下さった学生諸君、さらに出版に際し著者のわがままなお願いを聞いて下さったコロナ社の皆さんに大変お世話になった.ここに記して深く謝意を表する.

2010年4月

## 目 次

## 1. 序 章

### 2. 数学的準備

| 2.1  | 微分と積   | 分                                            | 7  |
|------|--------|----------------------------------------------|----|
| 2.2  | スカラ関数と | :ベクトル関数                                      | 11 |
| 2.3  | 座標     | 系                                            | 13 |
| 2.4  | ベクトルの  | 積                                            | 18 |
| 2.5  | ベクトル関数 | 女の微分                                         | 21 |
| 2.6  | 線 積    | 分                                            | 22 |
| 2.7  | 面積積    | 分                                            | 25 |
| 2.8  | 体 積 積  | 分                                            | 28 |
| 2.9  | 勾      | 配                                            | 29 |
| 2.10 | ベクトルの  | 発散とガウスの定理                                    | 31 |
| 2.11 | ベクトルの  | 回転とストークスの定理                                  | 36 |
| 2.12 | 幾つかの重  | 要なベクトル公式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 42 |
| 2.13 | 簡単な微分  | 方程式                                          | 45 |
| 章    | 末 問 題… |                                              | 48 |
|      |        |                                              |    |
|      |        | 3. 真空中の静電界                                   |    |
|      |        |                                              |    |
| 3.1  | 電荷の分   | 布 · · · · · · · · · · · · · · · · · · ·      | 51 |
| 3.2  | クーロンの法 | 划                                            | 57 |
| 3.3  | 近接作用と電 | 3界 · · · · · · · · · · · · · · · · · · ·     | 60 |
| 3.4  | 電 気 力  | 線                                            | 67 |
| 3.5  | ガウスの法  | : 則                                          | 69 |

| 3.6 電界と電位・静電ポテンシャル・・・・・・・ 82                              |
|-----------------------------------------------------------|
| $3.7$ 電気双極子と電気 $2$ 重層 $\cdots 96$                         |
| 3.8 多重極展開                                                 |
| 3.9 静電エネルギーとマクスウェルの静電応力101                                |
| 3.10 コンデンサと静電容量・・・・・・・・・110                               |
| 章 末 問 題117                                                |
|                                                           |
| 4. 誘電体中の静電界                                               |
| 4.1 静電容量と誘電率・・・・・・・・121                                   |
| 4.2 分極と分極ベクトル ・・・・・・・・・・・・・・・・122                         |
| 4.3 分極電荷とコンデンサの中の電界 · · · · · · · · · · · · · · · · · · · |
| 4.4 誘電体中の静電界の基本法則・・・・・・・・・126                             |
| 4.5 一様な誘電体中の電界とコンデンサの容量                                   |
| 4.6 境 界 条 件                                               |
| 4.7 誘電体に働く力*                                              |
| 4.8 コンデンサに働く力と MEMS・・・・・・・142                             |
| 4.9 誘電体のやや微視的考察 *                                         |
| 章 末 問 題                                                   |
|                                                           |
| 5. 静電界に関する境界値問題                                           |
| 5.1 静電界の基本法則・・・・・・・152                                    |
| 5.2 境界値問題-ラプラス方程式の解法- 157                                 |
| 5.3 電 気 影 像 法                                             |
| 5.4 等角写像法* · · · · · · 183                                |
| 5.5ラプラスの方程式の近似解法 * · · · · · · · · · · · · · · · · · ·    |
| 章 末 問 題                                                   |
|                                                           |
| 6. 定 常 電 流                                                |
| 6.1 定常電流と保存則・・・・・・・・・・190                                 |

9.1 ファラデーの電磁誘導の法則 · · · · · · · 287

| 9.2 運動する導体に発生する起電力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 290 |
|--------------------------------------------------------|-----|
| 9.3 電磁誘導に起因する現象・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・    | 293 |
| 9.4 電磁誘導を利用した装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・    | 296 |
| 9.5 準定常電流による磁界                                         | 299 |
| 9.6 インダクタンス                                            | 302 |
| 9.7 インダクタンスと磁気エネルギー                                    | 311 |
| 章 末 問 題                                                | 313 |
|                                                        |     |
| 10. マクスウェルの方程式と電磁波                                     |     |
|                                                        |     |
| 10.1 変 位 電 流                                           |     |
| 10.2 マクスウェルの方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・    |     |
| 10.3 電磁波の伝搬・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        |     |
| 10.4 エネルギー保存則とポインティングベクトル                              |     |
| 10.5 電磁ポテンシャル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      |     |
| 10.6 正弦振動する電磁界                                         |     |
| 10.7 アンテナからの電磁波放射                                      |     |
| 章 末 問 題                                                | 368 |
| 11 南茂左台 6 南左 同吸                                        |     |
| 11. 電磁気学と電気回路                                          |     |
| 11.1 準定常電流と基本方程式                                       | 370 |
| 11.2 エネルギー保存則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 375 |
| 11.3 回路方程式                                             | 378 |
| 11.4 簡単な電気回路・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 380 |
| 章 末 問 題                                                | 384 |
| 引用・参考文献                                                | 386 |
| 章末問題解答                                                 |     |
| 索 引                                                    |     |
|                                                        | 100 |

#### 電気の力と磁気の力

電気の歴史は古い、冬の乾燥した日に衣服が体にまとわりついたり、ドアノブを触ろうとして指先から火花が飛んだりすることがある。これは衣服や人の体が摩擦によって静電気を帯びたためだと説明される。また、子供の頃にわきの下や頭で下敷きを擦って、友達の髪の毛を逆立たせたり、小さな紙切れを吸い付ける遊びを経験した読者も少なくないと思う。中学の理科では、擦り合わせる物の組み合わせによって正に帯電したり負に帯電したりすること、同符号の電荷同士には反発する力が働き、異符号の電荷なら引き合う力が働くことを学ぶ†。こうした静電気の存在は既に紀元前6世紀ころの古代ギリシャ時代には知られていたようで、宝石となる琥珀を磨くために毛皮や毛布で擦ることによって静電気が起き、軽いものを吸い付けることを発見していた。実際、'電気'を表す英語 'electric' は、'琥珀質' というギリシャ語 ' $\eta\lambda\epsilon\kappa\tau\rhoo\nu$ ' に由来し、イギリスのギルバート (W. Gilbert) によって名づけられた。漢字の'電'は、古代中国で'雨' 冠のない文字が稲光を表す象形文字として作られ、それが甲骨文字として刻まれた。

高校生になると、この電気の力をクーロン力とよび、万有引力と同じように距離の2乗に反比例することを学ぶ。万有引力との違いは、クーロン力には引力と斥力の両方があることである。もう1つの違いはその大きさである。万有引力は、2つの物体の質量の積に比例し、距離の2乗に逆比例する。一方、クーロン力はそれぞれの電荷量の積に比例し、距離の2乗に逆比例する。2つの力は全く同じ形をしているが、比例係数が大きく異なる。水素原子のような1つの陽子と1つの電子がある場合に、その両者に加わる力の大きさを、各種の物理定数を代入して計算すると、クーロン力は万有引力に対して2.3×10<sup>39</sup>倍となり、電気の力が桁違いに大きいという結果が得られる。実感がわかないかもしれないが、陽子と電子に働

<sup>†</sup> 物体と物体を擦り合わせたときの帯電の仕方は、物体を構成している原子の相対的な性質による。例えば、ガラスを絹製の布で擦ると、ガラスには正の電荷、布には負の電荷が帯電する。もともとはデュ・フェがガラスに帯電した電荷をガラス電気、樹脂に帯電した電荷を樹脂電気といったのを、フランクリンがそれぞれを正電気、負電気と命名した。このために、電子の電荷が負となってしまった。帯電しやすさは材質に依存する。ウールやナイロンは正の電荷が帯電しやすく、アクリルやポリエステルは負に帯電しやすい。これに対して紙や革は帯電しにくい。人の体は正に帯電しやすい。

く万有引力が 1 kg を持ち上げる力だったとすると,電気の力は  $2.3 \times 10^{39} \text{ kg}$  の物体を持ち上げる力になる.太陽の重量は約  $1.99 \times 10^{30} \text{ kg}$  であるから,この電気の力は約 11 億 6 千万個の太陽を持ち上げる力に相当する.このように電荷にはとてつもなく大きな力が働く.正の電荷だけが集まると,大きな力で反発し合い四方八方に飛び散ってしまう.負の電荷同士でも同じである.これに対して正の電荷と負の電荷とがちょうどうまく交じり合うと,正負の電荷は互いにものすごい力で引き合って,最終的にはいわゆる中性の状態になる.

さて、読者は、髪の毛や下敷きを含めてあらゆる物質は、原子や原子が集まった分子でできていることを知っている。原子は、その直径がおおよそ 10<sup>-10</sup> m 程度の粒子で、原子核を中心にしてその周りを幾つもの電子が回る構造をしている。そして原子核は、正の電荷をもつ幾つかの陽子と中性の中性子からできていて、負の電荷をもつ電子と合わせて全体としては中性になっている<sup>†1</sup>. 上で述べたように、電気の力が非常に強いなら陽子と電子がぶつかってしまうのではないかと心配するかもしれない<sup>†2</sup>. これを防いでいるのが量子効果である。すなわち、電子が陽子に近づこうとすればするほど、大きな運動量をもたなくてはならないというのが不確定性原理 (uncertainty principle) の教えるところである。したがって、電子は図1.1のように原子核の周りのあ

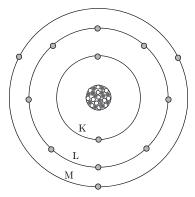



図 1.1 原子模型.電子の軌道は内側から K, L, M, ..., という名前が付いている.各軌道に収容される電子の最大数は決まっており, それぞれ 2, 8, 18, ... である.この図は原子番号 13のアルミニウムの場合で,電子は基本的にはエネルギー準位の低い軌道から詰まっていくので最外殻軌道には3個の電子が存在する.

る軌道を回って運動量を確保するようになる。電子はクーロン力によって原子内に留まっているが、外側の電子ほど原子核からの距離が遠いので束縛は弱くなる。物体と物体を擦り合わせると、接触面では物体を構成する原子や分子が激しく振動して、原子核からの束縛が弱い電子が剥ぎとられ、他の物体に移る。その結果、電子の移動先の物体は負に帯電し、残った側は正に帯電する。摩擦による静電気の発生はこのように物体内の電子の過不足によるものである。このことから、どちらが正に帯電するか、負に帯電するかは物体の組み合わせで決まる。ということも理解できるであろう。

<sup>†1</sup> 長い間,電子や陽子はそれ以上分割できない基本粒子と考えられてきた。しかし素粒子理論によると、陽子や中性子は、さらに小さなクォーク (quark) という素粒子に分割することができ、現在までに 6 種類のクォークが存在することがわかっている。こうなることの基礎を明らかにした、南部、小林、益川の 3 氏が 2008 年のノーベル物理学賞を受賞したことは記憶に新しい。陽子や中性子はそれぞれ 3 種類のクォークで作られているが、電子については現在のところ、これ以上細かくは分けられないと考えられている。

 $<sup>^{\</sup>dagger 2}$  本書で学ぶ古典的電磁気学を水素原子に適用すると、 $10^{-11}$  秒という短い時間で電子が陽子に衝突してしまう、という結論になる。これは明らかに誤りで、量子力学が生まれるきっかけの 1 つとなった。

一方、陽子はどうして原子核内に局在できるのであろうか.電気の力だけなら反発し合って、飛び散ってしまうはずである.ところが原子核内では核力 (nuclear force) とよばれる電気的な力とは異なる引力が働いていて、これが電気の力より強いために陽子を原子核内にとどめているのである.しかし核力は非常に守備範囲が狭く、電気の力より早く減衰する.すなわち、核力は近接の粒子にしか働かないのに対して、電気の力は核力よりも広範囲に働く.そのため、陽子の数が多くなるとその分だけ電気の力が大きくなって核力との釣り合いが微妙になる.つまり力のバランスが不安定となる.この代表がウランである.このような不安定な状態の原子に中性子をぶつけると、原子が2つに分裂する.両方とも正の電荷をもつから、電気の力によって飛び散る.これが次々と起こるのが核分裂 (nuclear fission) である.一般には核のエネルギーとよばれているが、実は電気の力なのである.これは上で述べたように、万有引力に比べると気の遠くなるほど大きく、莫大なエネルギーとなるのである.

このように、物質の細かな構造、すなわち物質の性質を決めているのは電気の力と量子力学的効果であるが、その境界はどのくらいであろうか。明確な境界があるわけではないが、大よそ  $10^{-13}$ m 程度までは電気的な力が支配的だといわれている。しかしながら、この程度になると '力' という概念さえあやふやになる。そこで本書では原子や分子の構造までは立ち入らないで、それらの電気的性質が平均的に取り扱える程度までの範囲を扱うものとする。

もう 1 つの不思議な力は磁気の力である. 磁気の歴史も電気のそれと同じくらいに古い. 磁気を表す英語 'magnetism' は、小アジアのマグネシア地方で産出する特別な石が金属を引き付けたことに由来しているといわれている. 磁石 (magnet) は、中国でも古い文献に現れ、漢字の'磁'は、'引き付けて次第に強くなる'という意味の'茲'に'石'を組み合わせて作られた会意文字である.

よく知られているように、磁石の N 極同士、S 極同士は反発し合い、N 極と S 極とは引き合う. そこで、電荷と対応づけて、N 極上に正の磁荷、S 極上に負の磁荷があると考えると、それらの間には電荷に対するクーロン力と全く同じ法則が成り立つ. したがって、これを出発点にすれば電気の力と同様の議論ができそうである. 古くはそのようにした教科書もあるが、電気と磁気の決定的な違いは、正や負の電荷は別々にとり出すことが出きるのに対して、磁荷は単独では存在できず、必ずペアで発生するということである. このことは 図 1.2 のように、磁石を

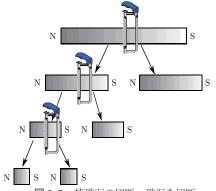



図 1.2 棒磁石の切断. 磁石を切断 しても N あるいは S 極だけの単 極をとり出すことができない.

いくら細かく切っていっても必ず N 極とS 極とが対になって現れることから理解できよう.

また、上で述べたように全ての物質は原子でできているのであるから、磁気に対するクーロン力も電子の運動に起因するものであると考えるのが理にかなっている。実際、電荷に対するクーロンの法則から磁界の法則を導くことも可能であるが、それには相対性理論の知識が必要となる。

一方,電荷が運動するということは、電流が流れるということである。電流が流れると問りに磁界ができるということは高校の物理で学んだ通りである。本書でもこの事実を基本原理の1つとして磁界に関する諸現象を説明することにする。そうすると、磁石の内部にも永久に流れ続ける電流がなければならないことになる。多くの物質ではこのように考えることができるが、鉄のような強磁性体では、この電流の効果よりも電子のスピンによる量子力学的な効果の方がはるかに大きい。これに関しては、量子力学の詳細には入らずに本書では現象論的な説明にとどめておくことにする。

電気的な力が電荷(電子)に作用すると、電荷はある速度で運動する.電荷が運動すると磁界が発生し磁気的な力も作用する.これらの電磁気的な力が電荷の運動を支配する.これと同時に、運動する電荷は周りの空間に電気的な作用と磁気的な作用を及ぼす.これが電波<sup>11</sup>であり、光である.電波は目には見えないが、その存在は疑いようのないことである.読者は数十 km 離れた放送局の電波を受けてテレビを見ているし、携帯電話も利用しているからである.ここで想像してみてほしい.電波を発生しているのは数十 km 離れたアンテナ上を振動する電子であり、それが数十キロメートル離れた読者のアンテナ上の電子を動かしているのである.この現象を理解するのが電磁気学や電磁波工学であり、情報をうまく伝達するためには電子の動きをどのように制御したらよいかを学ぶのが通信工学である.

#### 単 位 系

物理量である質量や長さを測定したとき、それらは数値に単位を付けて、20 kg とか 5 m と表す. 一般に物理量を表す記号には、英文字やギリシャ文字の斜体を、また単位には、立体の文字を使って両者を区別して表記する. 単位は物の数え方と同様に何かを基準として、その何倍であるかを表すために用いる. 足の大きさを基準としたフィートはその典型例である.

いろいろな経緯で過去に使われてきた様々な単位を、国際的に統一する実用計量単位系として、国際 (SI) 単位 (SI unit) が定められている $^{\dagger 2}$ . 表 1.1 に 7 つの基本単位を示す。電気と関連が深い電流の単位はアンペア [A] で、フランスの物理学者 A.M. Ampére の名前に因んでいる。以前は、硝酸銀の水溶液から電気分解して得られる銀の析出量を基に、電流 1

 $<sup>^{\</sup>dagger 1}$  電波とは、 $3 \times 10^{12}~{
m Hz} = 3~{
m THz}$ (テラヘルツ)以下の周波数の電磁波のことである.

 $<sup>^{\</sup>dagger 2}$  SI は、フランス語の Sytéme International d'Unités に由来する。単位とは一朝一夕に決まったものではなく、決まるまでには長い歴史があり、現在でもなお見直しが進められている。詳細については例えば、巻末の引用・参考文献 16) を参照されたい。

表 1.1 SI 基本単位

表 1.2 代表的な SI 組立単位

| 物理 | 1 量 | 記号 | 基本単位       |
|----|-----|----|------------|
| 長  | さ   | l  | メートル (m)   |
| 質  | 量   | m  | キログラム [kg] |
| 時  | 間   | t  | 秒 [s]      |
| 電  | 流   | I  | アンペア [A]   |
| 温  | 度   | T  | ケルビン 〔K〕   |
| 物質 | 量   | n  | モル [mol]   |
| 光  | 度   | I  | カンデラ 〔cd〕  |

| 物 質 量   | 組立単位      | 基本単位による表現                                                                    |
|---------|-----------|------------------------------------------------------------------------------|
| 力       | ニュートン (N) | $m \cdot kg \cdot s^{-2}$                                                    |
| エネルギー   | ジュール [J]  | $m^2 \cdot kg \cdot s^{-2}$                                                  |
| 仕 事 率   | ワット (W)   | $\mathrm{m}^2\cdot\mathrm{kg}\cdot\mathrm{s}^{-3}$                           |
| 電荷      | クーロン [C]  | $s \cdot A$                                                                  |
| 電 圧     | ボルト (V)   | $m^2 \cdot kg \cdot s^{-3} \cdot A^{-1}$                                     |
| 静電容量    | ファラッド〔F〕  | $m^{-2} \cdot kg^{-1} \cdot s^4 \cdot A^2$                                   |
| 抵 抗     | オーム [Ω]   | $m^2 \cdot kg \cdot s^{-3} \cdot A^{-2}$                                     |
| 磁束密度    | テスラ〔T〕    | $kg \cdot s^{-2} \cdot A^{-1}$                                               |
| インダクタンス | ヘンリ (H)   | $\mathrm{m}^2 \cdot \mathrm{kg} \cdot \mathrm{s}^{-2} \cdot \mathrm{A}^{-2}$ |

A の大きさが決められていた. しかし, 1948 年以降は, '真空中に 1 m 離しておかれた 2 本の細い平行導線のそれぞれに同じ電流を流したときに, 長さ 1 m あたり  $2\times 10^{-7}$  N の力を及ぼす電流の強さ'と定められている. これについてはまた後の章で詳しく述べる.

これらの基本単位だけを用いても物理量を表すことができるが、単位の組み合わせが多くなり、表記も煩雑となる。そこでこれらを組み合わせて作った組立単位も使われる。電磁気学の分野でよく使われる組立単位を表 1.2 に示す。こうした単位には、歴史的な実験や発見に関係した科学者の名前に因んだものが多い。例えば、イタリアのボルタ (A. Volta) が、1799年にいわゆるボルタの電池を発明した。この発明によって初めて連続的な電流がとり出せるようになった。ボルタ電池は、希硫酸溶液の中に銅と亜鉛の棒を立てたもので、銅が正の電極、亜鉛が負の電極となり、両者の間に 1.10 V の電位差が生じる 1.10 この電位差が後の 1 V の基になっている。また抵抗の 1 10 については、ジーメンス (S. Siemens) によって、断面積 1 10 10 で長さ 1 10 10 10 10 を標準に使おうという提案がなされたこともある。彼の名前は、抵抗の逆数である 10 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10

一方平面角度の単位としては、一般には度 [°] がよく使われているが、本書ではラジアン (radian) を用いる。ラジアンで表される角度の値は、単位円上に射影した周上の弧の長さに相当する。したがって  $360^\circ$  は、円周全部の長さ  $2\pi$  ラジアン [rad] に対応する。平面内の角度と同じようにして、曲面を見込む角度を立体角といい、単位はステラジアン [sr] を使う $^{\dagger 2}$ . この立体角については、3 章で詳しく説明する。

物理量が桁外れに大きかったり、小さかったりした場合には、単位の前に 10 の累乗を表す接頭文字を付けてもよいことになっている.表 1.3 に SI 単位で用いることのできる接頭文

<sup>†1</sup> 最初にボルタが使ったのは、塩水に銀と亜鉛の電極であったといわれている。彼はいろいろな電極や溶液を試していて、銅と亜鉛の電極で希硫酸を用いた電池の発明は1815年といわれている。

<sup>†2</sup> 角度の単位は SI 補助単位であったが、1995 年の国際度量衡総会において、その区分の廃止が決定され、現在は無次元の組立単位とされている。

| 接頭文字 | 記号 | 倍数         | 接頭文字 | 記号 | 倍数        | 接頭文字 | 記号 | 倍数        |
|------|----|------------|------|----|-----------|------|----|-----------|
| ヨクト  | у  | $10^{-24}$ | ミリ   | m  | $10^{-3}$ | メガ   | M  | $10^{6}$  |
| ゼプト  | z  | $10^{-21}$ | センチ  | С  | $10^{-2}$ | ギガ   | G  | $10^{9}$  |
| アト   | a  | $10^{-18}$ | デシ   | d  | $10^{-1}$ | テラ   | Т  | $10^{12}$ |
| フェムト | f  | $10^{-15}$ |      | _  |           | ペタ   | Р  | $10^{15}$ |
| ピコ   | р  | $10^{-12}$ | デカ   | da | 10        | エクサ  | E  | $10^{18}$ |
| ナノ   | n  | $10^{-9}$  | ヘクト  | h  | $10^{2}$  | ゼタ   | Z  | $10^{21}$ |
| マイクロ |    | $10^{-6}$  | 十 口  | k  | $10^{3}$  | ヨ タ  | Y  | $10^{24}$ |

表 1.3 SI 単位系で用いる接頭文字

字を示す。ここで  $10^3$  を表すキロ [k] 以下の小さな累乗の接頭文字は小文字を、それより大きな累乗の場合は、大文字を使うことに注意してほしい。

以下本書では、使用する英文字が何を表すかを区別しやすいように、フォントを変える。例えば 'A' が点を表したり、電流の単位であるアンペアの意味なら立体フォント A で、変数を表すならば斜体フォント A で、そしてベクトル、もしくは行列ならば斜体太字フォント A で表すことにする。また電磁気学を含め、物理、化学、数学の分野では、多くの物理量や変数を表すのにギリシャ文字を用いる。参考のため、表紙の見返しにギリシャ文字をまとめた。

#### 重ね合わせの原理と電荷保存の法則

重ね合わせの原理は極めて重要な原理である。電荷に働く力を例にとって説明しよう。図 1.3 のような 3 つの電荷 A, B, C があったとする。電荷 A に働く力  $F_A$  は,電荷 B による力  $F_B$  と電荷 C による力  $F_C$  を別々に考えて(もちろんベクトルの意味で)加え合わせたものになる。これを重ね合わせの原理(superposition principle)という。これは 2 個の電荷間に働く力が,他の電荷によって影響されないということも意味する重要な原理である。重ね合わせの原理は実験事実に基づくものであるが,これに反する事実はいまのところ見出されていない。重ね合わせの原理は電荷が運動していても成り立つし,

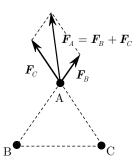



図 1.3 重ね合わせの原理.  $F_B$  を考えるときには電荷 C は考えなくてよい.  $F_C$  も同様である.

磁気に関しても成り立つ. したがって、多数の電荷があっても 1 つひとつの電荷に関する原理がわかりさえすればよいことになる. 数学では、線形性 (linearity) という言葉を学習するが、ここで使っている重ね合わせの原理と同じと思ってよい.

電荷保存の法則 (conservation law of electric charge) とは、素粒子の領域に至るまでいかなる化学的・物理的反応においても電荷の総量は変わらないという法則であり、電荷保存則ということもある。実験事実に基づく法則であるが現在までに反例は見つかっていない。

# 索引

| 【あ】     電磁界     342     一応答     38       アース     94     一保存則     342     一電流     19       アインシュタイン     62     エルステッド     214     カロリー     19       網目     209     エレクトレット     149     関数       アンテナ     345     遠隔作用     60     グリーン     35 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| アインシュタイン62エルステッド214カロリー19網目209エレクトレット149関数アンテナ345遠隔作用60グリーン—35                                                                                                                                                                              |
| 網目209エレクトレット149関数アンテナ345遠隔作用60グリーン——35                                                                                                                                                                                                      |
| アンテナ 345 遠隔作用 60 グリーン—— 35                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
| ダイポール――   365 演算子   超――   5                                                                                                                                                                                                                 |
| アンペア 4, 217 ラプラス— 42, 153 調和— 18                                                                                                                                                                                                            |
| ・ターン   268   縁端効果   158   デルタ   5                                                                                                                                                                                                           |
| ——の力 219<br>の注則 【お】                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                             |
| 積分形の―― 246 応答 完全反磁性 27                                                                                                                                                                                                                      |
| 微分形の―― 245 定常―― 381 完全導体 7                                                                                                                                                                                                                  |
| ·マクスウェルの法則 319   オーム 194   環路 20                                                                                                                                                                                                            |
| の右ねじの法則 216損 198 緩和時間 191,30                                                                                                                                                                                                                |
| 【い】                                                                                                                                                                                                                                         |
| NEXT                                                                                                                                                                                                                                        |
| 位相定数 360 静電—— 109 起磁力 26                                                                                                                                                                                                                    |
| 一般解     46 オンネス     278 気体放電     9                                                                                                                                                                                                          |
| 移動度 192                                                                                                                                                                                                                                     |
| 1 ンタグタンス                                                                                                                                                                                                                                    |
| 合成——解4                                                                                                                                                                                                                                      |
| 自己—— 302 一般—— 46 ——単位                                                                                                                                                                                                                       |
| 相互     303     特     46     逆起電力     20       インピーダンス     382, 383     特異     46     キャパシタ     11                                                                                                                                           |
| インピーダンス     382, 383     特異—     46     キャパシタ     11       固有—     335     特殊—     46     キャベンディッシュ     58, 9                                                                                                                               |
|                                                                                                                                                                                                                                             |
| 波動                                                                                                                                                                                                                                          |
| 【う】                                                                                                                                                                                                                                         |
| うず電流 295 ガウス 219 ——温度 27                                                                                                                                                                                                                    |
| - 損 295 — の定理 35 — ・ ワイスの法則 27                                                                                                                                                                                                              |
| 運動量モーメント 36 ——の法則 70, 128, 243, 319 ——の法則 147, 27                                                                                                                                                                                           |
| ( 積分形 ) 72                                                                                                                                                                                                                                  |
| 【え】                                                                                                                                                                                                                                         |
| 永久                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                             |
| 映像 拡散電位 188 ——法 17                                                                                                                                                                                                                          |
| ——電荷 176 核分裂 3 局所電界 12                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                             |
| エーテル 62 重ね合わせの原理 6 曲面 2                                                                                                                                                                                                                     |
| 枝 209 仮想変位法 115 ギルバート                                                                                                                                                                                                                       |

| キルヒホッフ        | 209           | コロナ放電        | 96                | 誘導                    | 298        |
|---------------|---------------|--------------|-------------------|-----------------------|------------|
| の法則           | 209, 210, 269 | コンダクタンス      | 5, 195            | ——力                   | 81         |
| 近接作用          | 60            | コンデンサ        | 110, 317          | 磁石                    | 3          |
| 金属            | 77            | 近藤効果         | 211               | 永久——                  | 279        |
| [ <           | . 1           | 【さ】          |                   | 磁性体                   | 254        |
|               |               |              |                   | 強——                   | 150, 255   |
| 空間電荷層         | 188           | サイクロトロン      |                   | 常——                   | 255        |
| 空中線           | 345           | ——運動<br>運動   | 225               | 反——                   | 255        |
| 空乏層           | 188           | ——角周波数       | 225               | 磁束                    | 219, 243   |
| クーロン          | 57            | サバール         | 229               | 線                     | 243        |
| の法則           | 57, 80        | ビオ・――の法則     | 230               | 密度                    | 219, 220   |
| ——力<br>·      | 1, 133        | 座標系          |                   | 時定数                   | 300        |
| クォーク          | 2             | 一般直交——       | 18                | 磁場                    | 215        |
| 屈折            | 135, 204      | 円柱——         | 15                | ベクトル<br>カポポル          | 220        |
| ――の法則         | 204           | 円筒——         | 15                | 自発磁化                  | 274        |
| 組立            | _             | 球——          | 17                | ジャイロ磁気係数              | 257        |
| ——単位<br>5     | 5             | 直角——         | 13                | 写像                    | 185        |
| クラウジウス-モン     |               | 残留           | 075               | 周期                    | 337        |
| 関係式           | 149           | 磁化           | 275               | 自由空間                  | 332        |
| グラスマン<br>グリーン | 18            | ——磁気<br>磁束密度 | 275               | 周波数分散性                | 122        |
|               | 95.6          | ——磁束密度       | 275               | ジュール                  | 100        |
| ——関数          | 356           | [L]          |                   | ——熱                   | 198        |
| の定理           | 44            |              | 0.07              | の法則<br>循環             | 198, 199   |
| [ (-          | <b>†</b> ]    | 磁位<br>       | $\frac{265}{267}$ | <sup>循環</sup><br>準静近似 | 37 $374$   |
| ゲージ変換         | 239           |              | 254, 258          | 华静電界                  | 365        |
| 結合係数          | 304           | 永久——         | 279               | 条件                    | 303        |
| ケルヴィン         | 177           | ベクトル         | 258               | ローレンツ――               | 348        |
| 減衰定数          | 360           | 誘導           | 279               | 常磁性体                  | 255        |
| 原理            | 500           | ——率          | 262               | 障壁層                   | 188        |
| 重ね合わせの―       |               | 磁荷           | 214               | 磁力線                   | 214        |
| 検流計           | 221           | 単            | 322               |                       |            |
|               |               | 磁界           | 215, 261          | 【す】                   |            |
| [2            | - 1           | ――ベクトル       | 220               | スカラ                   | 12         |
| 高温超伝導体        | 211           | 時間           |                   | ——積                   | 18         |
| 効果            |               | 緩和——         | 191               | ——場                   | 12         |
| 緑端——          | 158           | 磁気           |                   | ――ポテンシャル              | 89         |
| 近藤——          | 211           | ――エネルギー      | 312               | ストークスの定理              | 42, 45, 50 |
| ゼーベック――       | - 211         | ——回路         | 266               | ストラットンの定理             | 44         |
| 表皮——          | 294           | ——双極子        | 256               | スネルの法則                | 361        |
| ペルティエ         | 212           | ――双極子モーメント   | 220               | 【せ】                   |            |
| ホール――         | 228           | ——の力         | 3                 | 1.61                  |            |
| マイスナー——       | - 211         | ——抵抗         | 267               | 静磁界                   | 215        |
| AB            | 235           | ――ヒステリシス現象   | . 276             | 斉次方程式                 | 45         |
| コーシー・リーマ      |               | 誘導           | 254               | 静電                    |            |
| 合成インダクタン      |               | 履歴<br>       | 276               | ――エネルギー               | 105, 130   |
| 光速            | 336           | 磁極           | 214               | ——応力                  | 108, 109   |
| 勾配            | 31, 87        | 磁区           | 274               | 遮蔽                    | 93         |
| 交流回路理論        | 371           | 自己           |                   | ——界                   | 62         |
| 国際単位          | 4             | インダクタンス      | 302               | ――偏向型ブラウン             |            |
| 固有インピーダン      | ス 335         | ——減磁作用       | 283               | ――ポテンシャル              | 82, 89     |

| 誘導               | 79           | 【た】             |            | 自由——                                  | 125          |
|------------------|--------------|-----------------|------------|---------------------------------------|--------------|
| ——容量             | 103          |                 |            | 真——                                   | 125          |
| ゼーベック効果          | 211          | 耐電圧             | 143        | 素——                                   | 51           |
| 積                |              | ダイポールアンテナ       | 365        | 点——                                   | 52           |
| 外——              | 18           | 多重極展開           | 101, 189   | 分極——                                  | 123          |
| スカラ――            | 18           | 縦波              | 334        | 保存の法則                                 | 6, 79, 299   |
| 内——              | 18           | 単位              |            | みかけの――                                | 125          |
| ベクトル――           | 18           | 基本——            | 4          | 密度                                    | 53           |
| 積分               | 10           | 組立——            | 5          | 電界                                    | 62           |
| 経路——<br>線——      | 22, 37       | ――電荷量           | 51         | 外部——                                  | 207          |
| 体——              | 22, 37<br>28 | ――法線ベクトル<br>単極子 | 25         | 局所——<br>準静——                          | 123<br>365   |
| 体積——             | 28<br>28     | 電気——            | 96         | <del></del>                           | 62           |
| 定——              | 10           |                 | 90         | ——电介<br>分子——                          | 123          |
| 2 重——            | 11           | 【ち】             |            | ————————————————————————————————————— | 96           |
| 表面——             | 26           | 遅延ポテンシャル        | 355        | ホール――                                 | 228          |
| 面——              | 26           | 超関数             | 56         | 誘導——                                  | 291          |
| 面積——             | 26           | 超伝導             | 211        | ローレンツ――                               | 148          |
| 絶縁               | 121          | 超電導             | 211        | 電界槽法                                  | 206          |
| 休                | 78, 121      | ——体             | 278        | 電気                                    |              |
| 破壊               | 96           | 調和関数            | 183        | ——感受率                                 | 126          |
| 接触電位差            | 200          | 直角座標系           | 13         | ——双極子                                 | 101          |
| 接続点              | 209          | 直流モータ           | 221        | ——抵抗                                  | 194          |
| 接地               | 94           | 171             |            | ——伝導率                                 | 194          |
| 節点               | 209          | 【て】             |            | ——2 重層                                | 92, 99       |
| 線形性              | 6            | 抵抗              |            | ピエゾ——効果                               | 149          |
| 線素               | 22           | カーボン――          | 196        | ——比感受率                                | 126          |
| ――ベクトル           | 23           | チップ             | 196        | ピロ——効果                                | 149          |
| 全微分              | 10           | 内部——            | 201        | ——変位                                  | 128          |
| 【そ】              |              | 非オーム——<br>——率   | 324<br>194 | 電気力線<br>電子                            | 60           |
| 双極子              |              | 定常              | 134        | 自由——                                  | 77           |
| 永久——             | 146          | ——応答            | 381        | なだれ                                   | 95           |
| 磁気——             | 96, 256      | ——電流            | 191        | 分極                                    | 146          |
| 電気               | 96           | 定積分             | 10         | ———放出                                 | 78           |
| ――モーメント          | 98           | ディラック           | 55         | ――ポテンシャル                              | 348          |
| 相互               |              | 定理              |            | 誘導                                    | 287          |
| ――インダクタンス        | 303          | ガウスの――          | 35         | 電磁界                                   |              |
| 誘導               | 298          | グリーンの――         | 44         | ――エネルギー                               | 342          |
| 増分               | 7            | ストークスの――        | 42         | 電磁質量                                  | 343          |
| 速度               |              | ストラットンの――       | 44         | 電磁波                                   | 62, 336      |
| ドリフト――           | 192          | テスラ             | 219        | 伝送路                                   | 344          |
| ソレノイドコイル         | 271          | 鉄損              | 295        | 電束                                    |              |
| 損                |              | デュ・フェ           | 1          | ——電流                                  | 319          |
| うず電流——           | 295          | デルク門券           | 29         | 密度                                    | 70, 128, 318 |
| 鉄                | 295          | デルタ関数           | 55         | 電池                                    | 200          |
| ヒステリシス――         | 295          | 電圧計<br>電位       | 221        | 点電荷<br>伝道                             | 52           |
| 損失係数<br>ゾンマーフェルト | 360<br>322   | 电位<br>——差       | 82<br>84   | 伝導<br>超——                             | 211          |
| / V \ / T/V      | 344          | 左<br>電荷         | 51         | 電動機                                   | 220          |
|                  |              | · 映像——          | 176        | 電場                                    | 62           |
|                  |              | ·2C12C          | 110        | -5°///                                | 02           |

| 電波                   | 4         | [0]              |            | ——効果                                              | 294        |
|----------------------|-----------|------------------|------------|---------------------------------------------------|------------|
| 電流                   | 190       | <b>【の】</b>       |            | 表皮の厚さ                                             | 361        |
| うず――                 | 295       | ノイマン             | 288        | ピロ電気効果                                            | 149        |
| 過渡——                 | 191       | の公式              | 304        | 131                                               |            |
|                      | 221       | ノルム              | 19         | 【ふ】                                               |            |
| 準定常——                | 301       | 11+1             |            | ファラデー                                             | 60, 287    |
| 定常——                 | 191, 325  | 【は】              |            | ――の法則                                             | 289        |
| 電束——                 | 319       | 場                | 11         | フェーザ                                              | 383        |
| 変位——                 | 317, 319  | スカラ――            | 12         | 不確定性原理                                            | 2          |
| ——密度                 | 192       | ベクトル――           | 12         | 複素                                                |            |
| 誘導——                 | 288       | 媒介変数             | 22         | ——関数                                              | 184        |
| 電力                   | 198       | 波数               | 337        | ——電圧                                              | 383        |
| 皮相——                 | 384       | ――ベクトル           | 359        | ——電流                                              | 383        |
| 複素——                 | 385       | 波長               | 336        | ——電力                                              | 385        |
| ベクトル――               | 385       | 発散               | 33         | ——変数                                              | 183        |
| みかけの――               | 384       | 発電機              | 296        | ――ポインティング                                         |            |
| 無効——                 | 385       | 波動               |            | ベクトル                                              | 352        |
| 有効——                 | 384       | ――インピーダンス        |            | 誘電率                                               | 358        |
| 電話機                  | 297       | 波動方程式            | 332        | ブラウン管                                             | 226        |
| (と)                  |           | ベクトル――           | 332        | 静電偏向型——                                           | 226        |
|                      |           | ハミルトン            | 12         | 電磁偏向型——                                           | 227        |
| 等角写像法                | 185       | バルクハウンゼン効果       | 274        | プランク定数                                            | 257        |
| 導関数                  | 8         | 汎関数              | 186        | フランクリン                                            | 1          |
| 同次方程式                | 45        | 反磁性体             | 255        | フレミングの左手の法則                                       | 219        |
| 透磁率                  | 263       | 反射の法則            | 361        | 分極                                                | 123        |
| 真空の――                | 215       | 半導体              | 78         | ——電荷<br>票子                                        | 123        |
| 銅損                   | 199       | 万有引力             | 1          | 電子——                                              | 146        |
| 導体                   | 78, 121   | 【ひ】              |            | 配向——<br>——率                                       | 146        |
| 完全——<br>半——          | 78<br>70  |                  | 1.40       | ——挙<br>——ベクトル                                     | 126        |
| 等電位面                 | 78        | ピエゾ電気効果<br>ビオ    | 149        |                                                   | 123        |
| 等电 <u>区</u> 国<br>導電率 | 87        | E  <br> ・サバールの法則 | 229        | 分子<br>極性——                                        | 146        |
| 特異解                  | 194<br>46 |                  | 230<br>324 | 極 注─── 電界                                         | 140<br>123 |
| 特解                   | 46        | 光起電力効果           | 200        | 非極性——                                             | 146        |
| 特殊解                  | 46        | 非極性分子            | 146        | ナイ <u>                                       </u> | 140        |
| 特性方程式                | 48        | 比磁化率             | 262        | [^]                                               |            |
| トムソン                 | 177       | ヒステリシス           | 202        | 閉回路                                               | 209        |
| ドリフト速度               | 192       | 曲線               | 276        | 閉曲面                                               | 25         |
|                      |           | ——損              |            | 平均自由時間                                            | 191        |
| 【な】                  |           | 非斉次方程式           | 45         | 平面波                                               | 334        |
| 内積                   | 18        | 皮相電力             | 384        | ベクトル                                              | 12         |
| 内部抵抗                 | 201       | 非同次方程式           | 45         | 位置——                                              | 14         |
| ナブラ (▽)              | 29        | 比透磁率             | 263        | ——関数                                              | 13         |
| • •                  |           | 微分               | 7          | 基底——                                              | 14         |
| 【に】                  |           | ——可能             | 8          | 磁界——                                              | 220        |
| 2 階微分方程式             | 47        | 係数               | 8          | 磁場——                                              | 220        |
| 7401                 |           | 全——              | 10         | ——積                                               | 18         |
| 【ね】                  |           | 偏——              | 9          | 線素——                                              | 23         |
| 熱電対                  | 211       | 比誘電率             | 121        | 単位——                                              | 14         |
| 熱伝導方程式               | 371       | 表皮               |            | ——電力                                              | 385        |
|                      |           | 厚さ               | 373        | 場                                                 | 12         |
|                      |           |                  |            |                                                   |            |

| 波数——                                                                                                                                                             | 359                                                                                                                                                                              | コロナ――                                                                                                       | 96                                                                                         |                                                                                                     |                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| ——波動方程式                                                                                                                                                          | 332                                                                                                                                                                              | 飽和磁化                                                                                                        | 275                                                                                        | [ /Þ ]                                                                                              |                                                                                         |
| ポインティング――                                                                                                                                                        | 342                                                                                                                                                                              | ボーア                                                                                                         |                                                                                            | 唯一性                                                                                                 | 177                                                                                     |
| ――ポテンシャル                                                                                                                                                         | 235                                                                                                                                                                              | ——磁子                                                                                                        | 257                                                                                        | 有効電力                                                                                                | 384                                                                                     |
| 面素——                                                                                                                                                             | 26                                                                                                                                                                               | ――の量子条件                                                                                                     | 257                                                                                        | 誘電正接                                                                                                | 360                                                                                     |
| ベッセル関数                                                                                                                                                           | 163                                                                                                                                                                              | ホール                                                                                                         |                                                                                            | 誘電損                                                                                                 | 375                                                                                     |
| ペルティエ効果                                                                                                                                                          | 212                                                                                                                                                                              | ——移動度                                                                                                       | 229                                                                                        | 誘電体                                                                                                 | 121                                                                                     |
| ヘルツ                                                                                                                                                              | 317, 321                                                                                                                                                                         | 係数                                                                                                          | 228                                                                                        | 強——                                                                                                 | 150                                                                                     |
| 変圧器                                                                                                                                                              | 298, 308                                                                                                                                                                         | ——効果                                                                                                        | 228                                                                                        | ——損                                                                                                 | 375                                                                                     |
| 変位電流                                                                                                                                                             | 317, 319                                                                                                                                                                         | ——電界                                                                                                        | 228                                                                                        | 誘電率                                                                                                 | 121                                                                                     |
| 変数分離法                                                                                                                                                            | 160, 161                                                                                                                                                                         | 補助方程式                                                                                                       | 129                                                                                        | 真空の——, $\epsilon_0$                                                                                 | 58                                                                                      |
| 偏微分                                                                                                                                                              | 9                                                                                                                                                                                | 保磁力                                                                                                         | 275                                                                                        | 複素——                                                                                                | 358                                                                                     |
| 係数                                                                                                                                                               | 9                                                                                                                                                                                | 保存則                                                                                                         |                                                                                            | 誘導                                                                                                  |                                                                                         |
| 変分法                                                                                                                                                              | 187                                                                                                                                                                              | エネルギー――                                                                                                     | 342                                                                                        | ——加熱                                                                                                | 295                                                                                     |
| ヘンリー                                                                                                                                                             | 216                                                                                                                                                                              | 定常電流の――                                                                                                     | 194, 325                                                                                   | ——起電力                                                                                               | 288                                                                                     |
| 【ほ】                                                                                                                                                              |                                                                                                                                                                                  | 電荷——                                                                                                        | 6                                                                                          | 磁化                                                                                                  | 279                                                                                     |
|                                                                                                                                                                  |                                                                                                                                                                                  | 保存場                                                                                                         | 86                                                                                         | 自己——                                                                                                | 298                                                                                     |
| ポアソンの                                                                                                                                                            | 0 155 155                                                                                                                                                                        | ポテンシャル                                                                                                      | 00                                                                                         | 静電——                                                                                                | 79                                                                                      |
| 方程式 44, 15:<br>ポインティングベクトル                                                                                                                                       |                                                                                                                                                                                  | スカラ——<br>静電——                                                                                               | 89                                                                                         | 相互——<br>——電圧                                                                                        | 298                                                                                     |
| 被素                                                                                                                                                               | V = 342 $352$                                                                                                                                                                    | 遅延——                                                                                                        | 89<br>355                                                                                  | ——电压<br>——電界                                                                                        | 288<br>291                                                                              |
| 方向余弦                                                                                                                                                             | 352<br>14                                                                                                                                                                        | 電磁——                                                                                                        | 348                                                                                        | ——电尔<br>——電流                                                                                        | 288                                                                                     |
| 放射界                                                                                                                                                              | 365                                                                                                                                                                              | ポポフ                                                                                                         | 317                                                                                        | 誘導界                                                                                                 | 365                                                                                     |
| 放出                                                                                                                                                               | 505                                                                                                                                                                              | ボルタ                                                                                                         | 5                                                                                          |                                                                                                     | 300                                                                                     |
| 電子——                                                                                                                                                             | 78                                                                                                                                                                               | の電池                                                                                                         | 5, 200                                                                                     | 【よ】                                                                                                 |                                                                                         |
| 法則                                                                                                                                                               | .0                                                                                                                                                                               | ボルツマン                                                                                                       | 322                                                                                        | 横波                                                                                                  | 334                                                                                     |
|                                                                                                                                                                  |                                                                                                                                                                                  |                                                                                                             |                                                                                            |                                                                                                     |                                                                                         |
| アンペアの――                                                                                                                                                          | 245                                                                                                                                                                              |                                                                                                             | 322                                                                                        |                                                                                                     |                                                                                         |
| アンペアの――<br>アンペア・                                                                                                                                                 | 245                                                                                                                                                                              | <b>(</b> \$)                                                                                                | 922                                                                                        | [6]                                                                                                 |                                                                                         |
|                                                                                                                                                                  | 319                                                                                                                                                                              |                                                                                                             |                                                                                            |                                                                                                     |                                                                                         |
| アンペア・                                                                                                                                                            |                                                                                                                                                                                  | 【ま】<br>マイスナー効果<br>マクスウェル                                                                                    | 211, 278<br>58, 318                                                                        | 【ら】<br>ラーマー<br>——角周波数                                                                               | 225                                                                                     |
| アンペア・<br>マクスウェルの<br>オームの――<br>ガウスの―― 81                                                                                                                          | 319<br>194, 267<br>1, 243, 319                                                                                                                                                   | 【ま】<br>マイスナー効果<br>マクスウェル<br>アンペア・——の法!                                                                      | 211, 278<br>58, 318                                                                        | 【ら】<br>ラーマー<br>——角周波数<br>——半径                                                                       | 225<br>225                                                                              |
| アンペア・<br>マクスウェルの<br>オームの――<br>ガウスの―― 8〕<br>キュリーの――                                                                                                               | 319<br>194, 267<br>1, 243, 319<br>147, 273                                                                                                                                       | 【ま】<br>マイスナー効果<br>マクスウェル<br>アンペア・――の法!<br>――の応力                                                             | 211, 278<br>58, 318<br>319<br>60                                                           | 【ら】<br>ラーマー<br>——角周波数<br>——半径<br>ラプラシアン                                                             | 225<br>225<br>42                                                                        |
| アンペア・<br>マクスウェルの<br>オームの――<br>ガウスの―― 8i<br>キュリーの――<br>キュリー・ワイスの―                                                                                                 | 319<br>194, 267<br>1, 243, 319<br>147, 273<br>— 277                                                                                                                              | 【ま】<br>マイスナー効果<br>マクスウェル<br>アンペア・――の法!<br>――の応力<br>――の方程式                                                   | 211, 278<br>58, 318<br>319<br>60<br>317, 322                                               | 【ら】<br>ラーマー<br>——角周波数<br>——半径<br>ラプラシアン<br>ラプラス                                                     | 225<br>225<br>42<br>42                                                                  |
| アンペア・  マクスウェルのオームの―― 8i ガウスの―― 8i キュリーの―― キュリー・ワイスの― キルヒホッフの――                                                                                                   | 319<br>194, 267<br>1, 243, 319<br>147, 273<br>— 277<br>269                                                                                                                       | 【ま】<br>マイスナー効果<br>マクスウェル<br>アンペア・――の法!<br>――の応力                                                             | 211, 278<br>58, 318<br>319<br>60                                                           | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス ——演算子                                                              | 225<br>225<br>42<br>42<br>42, 153                                                       |
| アンペア・ マクスウェルのオームの―― ガウスの―― 8i キュリーの―― キュリー・ワイスの― キルヒホッフの―― クーロンの――                                                                                               | 319<br>194, 267<br>1, 243, 319<br>147, 273<br>— 277<br>269<br>57, 80                                                                                                             | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ                                                            | 211, 278<br>58, 318<br>319<br>60<br>317, 322                                               | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス ——演算子 ——の方程式                                                       | 225<br>225<br>42<br>42<br>42, 153<br>153, 154                                           |
| アンペア・<br>マクスウェルの<br>オームの――<br>ガウスの―― 8i<br>キュリーの――<br>キュリー・ワイスの―<br>キルヒホッフの――<br>クーロンの――<br>屈折の――                                                                | 319 194, 267 1, 243, 319 147, 273 269 57, 80 135                                                                                                                                 | 【ま】 マイスナー効果 マクスウェル アンペア・――の法! ――の応力 ――の方程式 マルコーニ 【み】                                                        | 211, 278<br>58, 318<br>319<br>60<br>317, 322<br>317                                        | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス ——演算子                                                              | 225<br>225<br>42<br>42<br>42, 153                                                       |
| アンペア・<br>マクスウェルの<br>オームの―― 81<br>オウスの―― 81<br>キュリーの――<br>キュリー・ワイスの―<br>キルヒホッフの――<br>クーロンの――<br>屈折の――<br>ジュールの――                                                  | 319 194, 267 1, 243, 319 147, 273 269 57, 80 135 198                                                                                                                             | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ                                                            | 211, 278<br>58, 318<br>319<br>60<br>317, 322                                               | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス ——演算子 ——の方程式                                                       | 225<br>225<br>42<br>42<br>42, 153<br>153, 154                                           |
| アンペア・<br>マクスウェルの<br>オームの―― 81<br>ガウスの―― 81<br>キュリーの――<br>キュリー・ワイスの―<br>キルヒホッフの――<br>クーロンの――<br>屈折の――<br>ジュールの――                                                  | 194, 267<br>1, 243, 319<br>147, 273<br>277<br>269<br>57, 80<br>135<br>198<br>6, 79, 299                                                                                          | 【ま】 マイスナー効果 マクスウェル アンペア・――の法! ――の応力 ――の方程式 マルコーニ 【み】                                                        | 211, 278<br>58, 318<br>319<br>60<br>317, 322<br>317                                        | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス ——演算子 ——の方程式 ランデのg係数 【り】                                           | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257                                    |
| アンペア・<br>マクスウェルのオームの――<br>ガウスの―― 81<br>キュリーの――<br>キュリー・ワイスの―<br>キルヒホッフの――<br>クーロンの――<br>屈折の――<br>ジュールの――<br>て射の――                                                | 194, 267<br>1, 243, 319<br>147, 273<br>277<br>269<br>57, 80<br>135<br>198<br>6, 79, 299<br>361                                                                                   | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ 【み】 ミッチェル 【む】                                              | 211, 278<br>58, 318<br>11 319<br>60<br>317, 322<br>317                                     | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス ——演算子 ——の方程式 ランデのg係数 【り】                                           | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257                                    |
| アンペア・<br>マクスウェルのオームの――<br>ガウスの―― 81<br>キュリーの――<br>キュリー・ワイスの―<br>キルヒホッフの――<br>クーロンの――<br>屈折の――<br>ジュールの――<br>電荷保存の――<br>反射の――<br>ビオ・サバールの――                       | 194, 267<br>1, 243, 319<br>147, 273<br>— 277<br>269<br>57, 80<br>135<br>198<br>6, 79, 299<br>361<br>— 230                                                                        | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ 【み】 ミッチェル 【む】                                              | 211, 278<br>58, 318<br>319<br>60<br>317, 322<br>317                                        | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス ——演算子 ——の方程式 ランデの g 係数 【り】 力率 立体角                                  | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257<br>385<br>5, 70                    |
| アンペア・<br>マクスウェルのオームの――<br>ガウスの―― 81<br>キュリーの――<br>キュリー・ワイスの―<br>キルヒホッフの――<br>クーロンの――<br>屈折の――<br>ジュールの――<br>電荷保存の――<br>反射の――<br>ビオ・サバールの――<br>ファラデーの――           | 5 — 319<br>194, 267<br>1, 243, 319<br>147, 273<br>— 277<br>269<br>57, 80<br>135<br>198<br>6, 79, 299<br>361<br>— 230<br>289                                                      | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ 【み】 ミッチェル 【む】                                              | 211, 278<br>58, 318<br>11 319<br>60<br>317, 322<br>317                                     | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス ——演算子 ——の方程式 ランデの g 係数 【り】 力率 立体角 全——                              | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257<br>385<br>5, 70<br>71              |
| アンベア・ マクスウェルのオームの—— ガウスの—— 81 キュリーの—— キュリー・ワイスの— キルヒホッフの—— クーロンの—— 屈折の—— ぎュールの—— 電荷保存の—— 反射の—— ビオ・サバールの—— ファラデーの—— フレミングの左手の—                                    | 57, 80<br>135, 198<br>6, 79, 299<br>219                                                                                                                                          | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ 【み】 ミッチェル 【む】 無効電力                                         | 211, 278<br>58, 318<br>319<br>60<br>317, 322<br>317<br>58                                  | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス ——演算子 ——の方程式 ランデの g 係数 【り】 力率 立体角 全—— 量子電磁気学                       | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257<br>385<br>5, 70<br>71<br>51        |
| アンベア・ マクスウェルのオームの— ガウスの— キュリーの— キュリー・ワイスの— キルヒホッフの— クーロンの— 屈折の— ジュールの— 電荷保存の— レオ・サバールの— ファラデーの— フレミングの左手の— 右ねじの——                                                | 57, 80<br>135<br>198, 267<br>1, 243, 319<br>147, 273<br>269<br>57, 80<br>135<br>198<br>6, 79, 299<br>361<br>230<br>289<br>219<br>216                                             | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ 【み】 ミッチェル 【む】 無効電力 【め】 メカトロニクス                             | 211, 278<br>58, 318<br>60<br>317, 322<br>317<br>58                                         | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス () () () () () () () () () () () () () (                           | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257<br>385<br>5, 70<br>71              |
| アンベア・ マクスウェルのオームの—— ガウスの—— 81 キュリーの—— キュリー・ワイスの— キルヒホッフの—— クーロンの—— 屈折の—— ぎュールの—— 電荷保存の—— 反射の—— ビオ・サバールの—— ファラデーの—— フレミングの左手の—                                    | 57, 80<br>135, 198<br>6, 79, 299<br>219                                                                                                                                          | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ 【み】 ミッチェル 【む】 無効電力                                         | 211, 278<br>58, 318<br>319<br>60<br>317, 322<br>317<br>58                                  | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス ——演算子 ——の方程式 ランデの g 係数 【り】 力率 立体角 全—— 量子電磁気学                       | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257<br>385<br>5, 70<br>71<br>51        |
| アンベア・ マクスウェルのオームの— ガウスの— キュリーの— キュリー・ワイスの— キルヒホッフの— クーロンの— 屈折の— ジュールの— 電荷保存の— レオ・サバールの— ファラデーの— フレミングの左手の— 右ねじの— レンツの——                                          | 57, 80<br>135<br>198, 267<br>1, 243, 319<br>147, 273<br>269<br>57, 80<br>135<br>198<br>6, 79, 299<br>361<br>230<br>289<br>219<br>216                                             | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ 【み】 ミッチェル 【む】 無効電力 【め】 メカトロニクス メムス (MEMS)                  | 211, 278<br>58, 318<br>319<br>60<br>317, 322<br>317<br>58<br>385                           | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス () () () () () () () () () () () () () (                           | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257<br>385<br>5, 70<br>71<br>51        |
| アンベア・ マクスウェルの オームの—— ガウスの—— 8i キュリーの—— キュリー・ワイスの— キルヒホッフの—— クーロンの—— 屈折の—— ジュールの—— 電荷保存の—— ビオ・サバールの—— ファラデーの—— フレミングの左手の— 右ねじの—— レンツの—— 方程式                       | 50                                                                                                                                                                               | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ 【み】 ミッチェル 【む】 無効電力 【め】 メカトロニクス メムス (MEMS) 面積積分             | 211, 278<br>58, 318<br>60<br>317, 322<br>317<br>58<br>385<br>142<br>142<br>142<br>32       | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス ——演算子 ——の方程数  【り】 力率 立体角 全—— 量子電磁気学 履歴曲線 【る】                       | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257<br>385<br>5, 70<br>71<br>51        |
| アンペア・ マクスウェルのオームの―― ガウスの―― 81 キュリーの―― キュリー・ワイスの―― キルヒホッフの―― クーロンの―― 屈折の―― ジュールの―― で材の―― ビオ・サバールの―― ファラデーの―― フレミングの左手の― たねじの―― レンツの―― 方程式 熱伝導                     | 5 — 319<br>194, 267<br>1, 243, 319<br>147, 273<br>— 277<br>269<br>57, 80<br>135<br>198<br>6, 79, 299<br>361<br>— 230<br>289<br>— 219<br>216<br>288<br>371<br>44, 154             | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ 【み】 ミッチェル 【む】 無効電力 【め】 メカトロニクス メムス (MEMS) 面積積分 面電荷密度 面電流密度 | 211, 278<br>58, 318<br>319<br>60<br>317, 322<br>317<br>58<br>385<br>142<br>142<br>32<br>53 | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス (の方程式) ランデの g 係数 【り】 力率 立体角 全一電磁気学 履歴曲線 【る】 ルジャンドル                 | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257<br>385<br>5, 70<br>71<br>51<br>276 |
| アンペア・ マクスウェルの オームの— ガウスの— キュリーの— キュリー・ワイスの— キルヒホッフの— クーロンの— 屈折の— ですっかの 電荷保存の 反射の— ビオ・サバールの— ファラデーの フレミングの左手の 右ねじの— レンツの カセンツの 方程式 熱伝導 ポアソンの—                     | 5 — 319<br>194, 267<br>1, 243, 319<br>147, 273<br>269<br>57, 80<br>135<br>198<br>6, 79, 299<br>361<br>— 230<br>289<br>— 219<br>216<br>288<br>371<br>44, 154                      | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ 【み】 ミッチェル 【む】 無効電力 【め】 メカトロニクス メムス (MEMS) 面積積分 面電荷密度       | 211, 278<br>58, 318<br>319<br>60<br>317, 322<br>317<br>58<br>385<br>142<br>142<br>32<br>53 | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス 演算方子 (あ) カンデの g 係数 【り】 力率 立体角 全一 量子電磁気学 履歴曲線 【る】 ルジャンドル ——関数 ——陪関数 | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257<br>385<br>5, 70<br>71<br>51<br>276 |
| アンペア・ マクスウェルの オームの―― ガウスの―― 81 キュリーの―― キュリー・ワイスの― キルヒホッフの―― クーロンの―― 屈折の―― ですれての―― です・サバールの―― ファラデーの―― フレミングの左手の― たねじの―― レンツの―― 方程式 熱伝導 マクスウェルの――                 | 5 — 319<br>194, 267<br>1, 243, 319<br>147, 273<br>— 277<br>269<br>57, 80<br>135<br>198<br>6, 79, 299<br>361<br>— 230<br>289<br>— 219<br>216<br>288<br>371<br>44, 154<br>317, 322 | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の応力 ――の方程式 マルコーニ 【み】 ミッチェル 【む】 無効電力 【め】 メカトロニクス メムス (MEMS) 面積積分 面電荷密度 面電流密度 | 211, 278<br>58, 318<br>319<br>60<br>317, 322<br>317<br>58<br>385<br>142<br>142<br>32<br>53 | 【ら】 ラーマー ——角周波数 ——半アン ラプラス 漢の方程 ランデの g 係数 【り】 力率 立体 全子電線 【る】 ルジャンドル ——関数                            | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257<br>385<br>5, 70<br>71<br>51<br>276 |
| アンペア・ マクスウェルの オームの―― ガウスの―― 81 キュリーの―― キュリー・ワイスの― キルヒホッフの―― クーロンの―― 屈折の―― ですったの―― ですった。 ですった。 ですった。 ないののでです。 がでのでを手の一 ないのの。 たいツのの 方程式 熱伝でリンの―― マクスウェルの―― ラプラスの―― | 5 — 319<br>194, 267<br>1, 243, 319<br>147, 273<br>— 277<br>269<br>57, 80<br>135<br>198<br>6, 79, 299<br>361<br>— 230<br>289<br>— 219<br>216<br>288<br>371<br>44, 154<br>317, 322 | 【ま】 マイスナー効果 マクスウェル アンペア・――の法則 ――の方程式 マルコーニ 【み】 ミッチェル 【む】 無効電力 【め】 メカトロニクス メムス (MEMS) 面積積分 面電荷密度 面電流密度 【も】   | 211, 278 58, 318 60 317, 322 317 58 385 142 142 32 53 248                                  | 【ら】 ラーマー ——角周波数 ——半径 ラプラシアン ラプラス 演算方子 (あ) カンデの g 係数 【り】 力率 立体角 全一 量子電磁気学 履歴曲線 【る】 ルジャンドル ——関数 ——陪関数 | 225<br>225<br>42<br>42<br>42, 153<br>153, 154<br>257<br>385<br>5, 70<br>71<br>51<br>276 |

| ——の法則                      | 288        | ローレンツ                                          | 148       | 電界                                          | 148       |
|----------------------------|------------|------------------------------------------------|-----------|---------------------------------------------|-----------|
| 【ろ】                        |            | ――・クーロン力                                       | 222       | <b>一</b> 一力                                 | 222, 291  |
| 191                        |            | ――ゲージ                                          | 348       | ロビソン                                        | 58        |
| ローレンス–ローレンツの式              | 149        | ——条件                                           | 348       |                                             |           |
|                            |            | >                                              |           | >                                           |           |
| [ ]                        |            | I CI                                           |           | Coulomb                                     |           |
| <b>[A]</b>                 |            | (C)                                            |           | ——, C.A.                                    | 51        |
| AB 効果                      | 235        | CAD                                            | 195       | 's law                                      | 58        |
| active power               | 384        | capacitor                                      | 110       | cross product                               | 18        |
| actuator                   | 142        | carrier                                        | 192       | CRT                                         | 226       |
| aerial                     | 345        | Cartesian coordinate system                    | n 13      | Curie temperature                           | 276       |
| Aharanov-Bohm effect       | 235        | cathode-ray tube                               | 226       | current                                     |           |
| Ampére                     |            | Cavendish, H.                                  | 58        | conduction —                                | 191       |
| , A.M.                     | $4,\ 217$  | charge                                         |           | displacement ——                             | 319       |
| ——'s circuital law         | 245        | apparent ——                                    | 125       | eddy ——                                     | 295       |
| ampere-turn                | 268        | free ——                                        | 125       | electric ——                                 | 190       |
| angular momentum           | 36         | image ——                                       | 176       | —— density                                  | 192       |
| antenna                    | 345        | magnetic ——                                    | 214       | induced ——                                  | 288       |
| dipole ——                  | 365        | polarization ——                                | 123       | induction ——                                | 288       |
| apparent                   |            | true ——                                        | 125       | quasi-stationary ——                         | 301       |
| charge                     | 125        | circulation                                    | 37        | sationary ——                                | 191       |
| — power                    | 384        | Clausius-Mossotti                              | 149       | transient ——                                | 191       |
| pproximation               |            | closed surface                                 | 25        | cyclotron                                   |           |
| quasi-static ——            | 374        | coercive force                                 | 276       | — angular frequenc                          | y 225     |
| area element vector        | 26         | complex permittivity                           | 358       | — motion                                    | 225       |
| associated Legendre funct  | ion 164    | condensor                                      | 110       | cylindrical coordinate sy                   | stem 15   |
| ttenuation constant        | 360        | condition                                      |           |                                             |           |
| / \                        |            | Lorentz —                                      | 348       | (D)                                         |           |
| (B)                        |            |                                                | 5, 195    | definite integral                           | 10        |
| oack electromotive force   | 202        | conduction current                             | 191       | $\nabla(\mathrm{del})$                      | 29        |
| Barkhaunsen effect         | 274        | conductivity                                   |           | demagnetization                             |           |
| parrier layer              | 188        | electric —                                     | 194       | self —                                      | 283       |
| pasis vector               | 14         | super—                                         | 211       | density                                     | 200       |
| pattery                    | 200        | 1                                              | 3, 121    | magnetic flux —                             | 219       |
| Bessel                     | 163        | perfect —                                      | 78        | depletion layer                             | 188       |
| Biot                       | 100        | conformal mapping                              | 185       | derivative                                  | 8         |
|                            | 230        | conservative field                             | 86        | diamagnetic material                        | 255       |
| ——, J.                     | 229        | constant                                       | 00        | diamagnetism                                | 200       |
| Bohr magneton              | 257        | attenuation —                                  | 360       | perfect —                                   | 278       |
| Boltzman, L.               | 322        | phase —                                        | 360       | super—                                      | 278       |
| ooundary                   | 322        | contact potential difference                   |           | dielectric                                  | 2,0       |
| —— condition               | 133        | contour integral                               | 200       | breakdown                                   | 96        |
| — value problem            | 155<br>157 | coordinate system                              | 22        | constant                                    | 90<br>121 |
| oranch                     | 209        | Cartesian —                                    | 13        | specific —                                  | 121       |
| Braun                      | 209        | cylindrical —                                  | 15<br>15  | specific —————————————————————————————————— |           |
| raun<br>—, K.F.            | 917        | orthogonal——                                   |           |                                             | 375       |
| ——, K.F.<br>—— tube        | 317        | orthogonal——                                   | 18        | dielectrics                                 | 121       |
| — tupe                     | 226        | rectangular ——                                 | 13        | differentiable                              | 8         |
|                            |            | om homina l                                    |           |                                             |           |
| oreakdown<br>dielectric —— | 96         | spherical ———————————————————————————————————— | 17<br>199 | differential —— coefficient                 | 7<br>8    |

| partial ——                                                                                                                                                                                                                                                            | 9                                                                                                                                                  | resistance                                                                                                                                                                                                             | 194                                                                                    | induced                                                                                                                                                                                                                    |                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| — coefficient                                                                                                                                                                                                                                                         |                                                                                                                                                    | — susceptibility                                                                                                                                                                                                       | 126                                                                                    | electromagnetic —                                                                                                                                                                                                          | -288                                                                               |
| total —                                                                                                                                                                                                                                                               | 10                                                                                                                                                 | electromagnetic                                                                                                                                                                                                        | 120                                                                                    | Lorentz —                                                                                                                                                                                                                  | 222                                                                                |
| diffusion potential                                                                                                                                                                                                                                                   | 188                                                                                                                                                | — induction                                                                                                                                                                                                            | 287                                                                                    | magnetomotive ——                                                                                                                                                                                                           | 267                                                                                |
| dipole                                                                                                                                                                                                                                                                |                                                                                                                                                    | wave                                                                                                                                                                                                                   | 336                                                                                    | self ——                                                                                                                                                                                                                    | 81                                                                                 |
| — antenna                                                                                                                                                                                                                                                             | 365                                                                                                                                                | electromotive force                                                                                                                                                                                                    | 201                                                                                    | free space                                                                                                                                                                                                                 | 332                                                                                |
| electric ——                                                                                                                                                                                                                                                           | 96                                                                                                                                                 | back ——                                                                                                                                                                                                                | 202                                                                                    | fringe effect                                                                                                                                                                                                              | 158                                                                                |
| —— moment                                                                                                                                                                                                                                                             | 98                                                                                                                                                 | electron                                                                                                                                                                                                               |                                                                                        | function                                                                                                                                                                                                                   |                                                                                    |
| magnetic ——                                                                                                                                                                                                                                                           | 256                                                                                                                                                | —— avalanche                                                                                                                                                                                                           | 95                                                                                     | associated Legendre —                                                                                                                                                                                                      | 164                                                                                |
| Dirac, P.A.M.                                                                                                                                                                                                                                                         | 55                                                                                                                                                 | free ——                                                                                                                                                                                                                | 77                                                                                     | Bessel ——                                                                                                                                                                                                                  | 163                                                                                |
| directional cosine                                                                                                                                                                                                                                                    | 14                                                                                                                                                 | electronic                                                                                                                                                                                                             |                                                                                        | Green's ——                                                                                                                                                                                                                 | 356                                                                                |
| displacement                                                                                                                                                                                                                                                          |                                                                                                                                                    | polarization                                                                                                                                                                                                           | 146                                                                                    | Legendre ——                                                                                                                                                                                                                | 164                                                                                |
| current                                                                                                                                                                                                                                                               | 319                                                                                                                                                | electrostatic                                                                                                                                                                                                          |                                                                                        | functional                                                                                                                                                                                                                 | 186                                                                                |
| electric ——                                                                                                                                                                                                                                                           | 128, 319                                                                                                                                           | —— field                                                                                                                                                                                                               | 62                                                                                     |                                                                                                                                                                                                                            |                                                                                    |
| distribution                                                                                                                                                                                                                                                          | 56                                                                                                                                                 | —— induction                                                                                                                                                                                                           | 79                                                                                     | <b>(</b> G)                                                                                                                                                                                                                |                                                                                    |
| dot product                                                                                                                                                                                                                                                           | 18                                                                                                                                                 | —— potential                                                                                                                                                                                                           | 82                                                                                     | gaseous discharge                                                                                                                                                                                                          | 96                                                                                 |
| drift velocity                                                                                                                                                                                                                                                        | 192                                                                                                                                                | shield                                                                                                                                                                                                                 | 93                                                                                     | gauge transformation                                                                                                                                                                                                       | 239                                                                                |
| [77]                                                                                                                                                                                                                                                                  |                                                                                                                                                    | element                                                                                                                                                                                                                |                                                                                        | gauss                                                                                                                                                                                                                      | 219                                                                                |
| $(\mathbf{E})$                                                                                                                                                                                                                                                        |                                                                                                                                                    | area — vector                                                                                                                                                                                                          | 26                                                                                     | Gauss' theorem                                                                                                                                                                                                             | 35                                                                                 |
| earth                                                                                                                                                                                                                                                                 | 94                                                                                                                                                 | line ——                                                                                                                                                                                                                | 22                                                                                     | general solution                                                                                                                                                                                                           | 46                                                                                 |
| eddy current                                                                                                                                                                                                                                                          | 295                                                                                                                                                | vector                                                                                                                                                                                                                 | 23                                                                                     | Gilbert, W                                                                                                                                                                                                                 | 1                                                                                  |
| effect                                                                                                                                                                                                                                                                |                                                                                                                                                    | equation                                                                                                                                                                                                               |                                                                                        | Grassmann H.                                                                                                                                                                                                               | 18                                                                                 |
| Aharanov-Bohm ——                                                                                                                                                                                                                                                      | 235                                                                                                                                                | heat transfer ——                                                                                                                                                                                                       | 371                                                                                    | Green                                                                                                                                                                                                                      |                                                                                    |
| Barkhaunsen ——                                                                                                                                                                                                                                                        | 274                                                                                                                                                | Laplace's ——                                                                                                                                                                                                           | 153                                                                                    | ——'s function                                                                                                                                                                                                              | 356                                                                                |
| fringe ——                                                                                                                                                                                                                                                             | 158                                                                                                                                                | Maxwell's ——                                                                                                                                                                                                           | 317                                                                                    | ——'s theorem                                                                                                                                                                                                               | 44                                                                                 |
| Hall ——                                                                                                                                                                                                                                                               | 228                                                                                                                                                | Poisson's ——                                                                                                                                                                                                           | 44                                                                                     | gyromagnetic ratio                                                                                                                                                                                                         | 257                                                                                |
|                                                                                                                                                                                                                                                                       |                                                                                                                                                    |                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                            |                                                                                    |
| Meissner ——                                                                                                                                                                                                                                                           | 211, 278                                                                                                                                           | ether                                                                                                                                                                                                                  | 62                                                                                     | [11]                                                                                                                                                                                                                       |                                                                                    |
| Meissner ——<br>Peltier ——                                                                                                                                                                                                                                             | 211, 278<br>212                                                                                                                                    | ether<br>expansion                                                                                                                                                                                                     | 62                                                                                     | [H]                                                                                                                                                                                                                        |                                                                                    |
| Peltier —— photovoltaic ——                                                                                                                                                                                                                                            | ,                                                                                                                                                  |                                                                                                                                                                                                                        | 62<br>101                                                                              | Hall                                                                                                                                                                                                                       |                                                                                    |
| Peltier —— photovoltaic —— piezo electric ——                                                                                                                                                                                                                          | 212                                                                                                                                                | expansion<br>multipole ——                                                                                                                                                                                              |                                                                                        | Hall —— effect                                                                                                                                                                                                             | 228                                                                                |
| Peltier —— photovoltaic —— piezo electric —— pyro electric ——                                                                                                                                                                                                         | 212<br>200<br>149<br>149                                                                                                                           | expansion                                                                                                                                                                                                              |                                                                                        | Hall —— effect —— mobility                                                                                                                                                                                                 | 229                                                                                |
| Peltier —— photovoltaic —— piezo electric —— pyro electric —— Seebeck ——                                                                                                                                                                                              | 212<br>200<br>149<br>149<br>211                                                                                                                    | expansion multipole ——  [F] factor                                                                                                                                                                                     | 101                                                                                    | Hall —— effect —— mobility Hamilton W.R.                                                                                                                                                                                   | 229<br>12                                                                          |
| Peltier —— photovoltaic —— piezo electric —— pyro electric —— Seebeck —— skin ——                                                                                                                                                                                      | 212<br>200<br>149<br>149<br>211<br>294                                                                                                             | expansion multipole ——  [F] factor power ——                                                                                                                                                                            |                                                                                        | Hall —— effect —— mobility Hamilton W.R. heat transfer equation                                                                                                                                                            | 229<br>12<br>371                                                                   |
| Peltier —— photovoltaic —— piezo electric —— pyro electric —— Seebeck —— skin —— effective power                                                                                                                                                                      | 212<br>200<br>149<br>149<br>211<br>294<br>384                                                                                                      | expansion multipole ——  [F] factor power —— Faraday                                                                                                                                                                    | 101<br>385                                                                             | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J.                                                                                                                                                  | 229<br>12<br>371<br>216                                                            |
| Peltier —— photovoltaic —— piezo electric —— pyro electric —— Seebeck —— skin —— effective power Einstein, A.                                                                                                                                                         | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62                                                                                                | expansion multipole ——  [F] factor power —— Faraday ——'s law                                                                                                                                                           | 101<br>385<br>289                                                                      | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. 317                                                                                                                                  | 229<br>12<br>371                                                                   |
| Peltier —— photovoltaic —— piezo electric —— pyro electric —— Seebeck —— skin —— effective power Einstein, A. electlet                                                                                                                                                | 212<br>200<br>149<br>149<br>211<br>294<br>384                                                                                                      | expansion multipole ——  [F]  factor power —— Faraday ——'s law ——, M.                                                                                                                                                   | 385<br>289<br>60, 287                                                                  | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. high temperature                                                                                                                     | 229<br>12<br>371<br>216<br>7, 321                                                  |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric                                                                                                                                             | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149                                                                                         | expansion multipole —  [F]  factor power — Faraday ——'s law ——, M. ferroelectric                                                                                                                                       | 385<br>289<br>60, 287<br>150                                                           | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. high temperature superconductor                                                                                                      | 229<br>12<br>371<br>216<br>7, 321                                                  |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity                                                                                                                              | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149                                                                                         | expansion multipole ——  [F]  factor power —— Faraday ——'s law ——, M. ferroelectric ferromagnetic                                                                                                                       | 385<br>289<br>60, 287<br>150<br>150                                                    | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. high temperature                                                                                                                     | 229<br>12<br>371<br>216<br>7, 321                                                  |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity — current                                                                                                                    | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149                                                                                         | expansion multipole —  [F]  factor power — Faraday ——'s law ——, M. ferroelectric ferromagnetic —— material                                                                                                             | 385<br>289<br>60, 287<br>150<br>150<br>255                                             | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. 317 high temperature superconductor hysterisis                                                                                       | 229<br>12<br>371<br>216<br>7, 321                                                  |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity — current — density                                                                                                          | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149<br>194<br>190<br>192                                                                    | expansion multipole —  [F]  factor power — Faraday ——'s law ——, M. ferroelectric ferromagnetic —— material field                                                                                                       | 385<br>289<br>60, 287<br>150<br>255<br>11                                              | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. high temperature superconductor hysterisis  [I]                                                                                      | 229<br>12<br>371<br>216<br>7, 321<br>211<br>276                                    |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity — current — density — dipole                                                                                                 | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149<br>194<br>190<br>192<br>96                                                              | expansion multipole —  [F]  factor power — Faraday ——'s law ——, M. ferroelectric ferromagnetic —— material field conservative ——                                                                                       | 385<br>289<br>60, 287<br>150<br>150<br>255<br>11<br>86                                 | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. 31% high temperature superconductor hysterisis  【1】 IH 調理器                                                                           | 229<br>12<br>371<br>216<br>7, 321                                                  |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity — current — density — dipole — moment                                                                                        | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149<br>194<br>190<br>192<br>96<br>98                                                        | expansion multipole —  [F]  factor power — Faraday ——'s law ——, M. ferroelectric ferromagnetic —— material field conservative — electrostatic —                                                                        | 385<br>289<br>60, 287<br>150<br>255<br>11<br>86<br>62                                  | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. 317 high temperature superconductor hysterisis  【I】  IH 調理器 image                                                                    | 229<br>12<br>371<br>216<br>7, 321<br>211<br>276                                    |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity — current — density — dipole — moment — displacement                                                                         | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149<br>194<br>190<br>192<br>96<br>98<br>128, 319                                            | expansion multipole —  [F]  factor power — Faraday ——'s law ——, M. ferroelectric ferromagnetic —— material field conservative — electrostatic induction —                                                              | 385<br>289<br>60, 287<br>150<br>150<br>255<br>11<br>86<br>62<br>365                    | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. 312 high temperature superconductor hysterisis  【I】 IH 調理器 image —— chage                                                            | 229<br>12<br>371<br>216<br>7, 321<br>211<br>276<br>295                             |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity — current — density — dipole — moment — displacement — double layer                                                          | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149<br>194<br>190<br>192<br>96<br>98<br>128, 319<br>99                                      | expansion multipole ——  [F]  factor power —— Faraday ——'s law ——, M. ferroelectric ferromagnetic —— material field conservative —— electrostatic —— induction —— magnetic ——                                           | 385<br>289<br>60, 287<br>150<br>255<br>11<br>86<br>62<br>365<br>215, 220               | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. 31% high temperature superconductor hysterisis  【I】 IH 調理器 image —— chage ——method                                                   | 229<br>12<br>371<br>216<br>7, 321<br>211<br>276                                    |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity — current — density — dipole — moment — displacement — double layer ferro—                                                   | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149<br>194<br>190<br>192<br>96<br>98<br>128, 319<br>99                                      | expansion multipole —  [F]  factor power — Faraday — 's law — , M. ferroelectric ferromagnetic — material field conservative — electrostatic — induction — magnetic — magnetostatic — magnetostatic —                  | 385<br>289<br>60, 287<br>150<br>255<br>11<br>86<br>62<br>365<br>215, 220<br>215        | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. 317 high temperature superconductor hysterisis  【I】 IH 調理器 image —— chage ——method impedance                                         | 229 12 371 216 7, 321 211 276 295 176 176                                          |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity — current — density — dipole — moment — displacement — double layer ferro — flux density                                     | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149<br>194<br>190<br>192<br>96<br>98<br>128, 319<br>99<br>150<br>70, 128                    | expansion multipole —  [F]  factor power — Faraday —'s law —, M. ferroelectric ferromagnetic — material field conservative — electrostatic — induction — magnetic — magnetostatic — quasi-static —                     | 385<br>289<br>60, 287<br>150<br>255<br>11<br>86<br>62<br>365<br>215, 220<br>215<br>365 | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. 317 high temperature superconductor hysterisis  【I】  IH 調理器 image —— chage ——method impedance intrinsic ——                           | 229 12 371 216 7, 321 211 276 295 176 176 335                                      |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity — current — density — dipole — moment — displacement — double layer ferro — flux density — lines of force                    | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149<br>194<br>190<br>192<br>96<br>98<br>128, 319<br>99<br>150<br>70, 128<br>60              | expansion multipole —  [F]  factor power — Faraday — 's law — , M. ferroelectric ferromagnetic — material field conservative — electrostatic — induction — magnetic — magnetostatic — magnetostatic —                  | 385<br>289<br>60, 287<br>150<br>255<br>11<br>86<br>62<br>365<br>215, 220<br>215        | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. 317 high temperature superconductor hysterisis  【I】 IH 調理器 image —— chage ——method impedance                                         | 229<br>12<br>371<br>216<br>7, 321<br>211<br>276<br>295<br>176<br>176<br>335<br>335 |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity — current — density — dipole — moment — displacement — double layer ferro — flux density                                     | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149<br>194<br>190<br>192<br>96<br>98<br>128, 319<br>99<br>150<br>70, 128                    | expansion multipole —  (F)  factor power — Faraday — 's law — , M. ferroelectric ferromagnetic — material field conservative electrostatic — induction magnetic — magnetostatic — quasi-static — radiation —           | 385 289 60, 287 150 255 11 86 62 365 215, 220 215 365 365                              | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. 317 high temperature superconductor hysterisis  【I】  IH 調理器 image —— chage ——method impedance intrinsic —— wave ——                   | 229 12 371 216 7, 321 211 276 295 176 176 335                                      |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity — current — density — dipole — moment — displacement — double layer ferro — flux density — lines of force — monopole         | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149<br>194<br>190<br>192<br>96<br>98<br>128, 319<br>99<br>150<br>70, 128<br>60<br>96        | expansion multipole —  [F]  factor power — Faraday — 's law — , M. ferroelectric ferromagnetic — material field conservative — electrostatic — induction — magnetic — magnetostatic — quasi-static — radiation — force | 385 289 60, 287 150 255 11 86 62 365 215, 220 215 365 365                              | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. 317 high temperature superconductor hysterisis  【I】  IH 調理器 image —— chage ——method impedance intrinsic —— wave —— increment         | 229<br>12<br>371<br>216<br>7, 321<br>211<br>276<br>295<br>176<br>176<br>335<br>335 |
| Peltier — photovoltaic — piezo electric — pyro electric — Seebeck — skin — effective power Einstein, A. electlet electric — conductivity — current — density — dipole — moment — displacement — double layer ferro — flux density — lines of force — monopole — motor | 212<br>200<br>149<br>149<br>211<br>294<br>384<br>62<br>149<br>194<br>190<br>192<br>96<br>98<br>128, 319<br>99<br>150<br>70, 128<br>60<br>96<br>220 | expansion multipole —  [F]  factor power — Faraday —'s law —, M. ferroelectric ferromagnetic — material field conservative — electrostatic — induction — magnetic — magnetic — radiation — force back electromotive —  | 385 289 60, 287 150 255 11 86 62 365 215, 220 215 365 365                              | Hall —— effect —— mobility Hamilton W.R. heat transfer equation Henry, J. Hertz, H.R. 317 high temperature superconductor hysterisis  【I】  IH 調理器 image —— chage ——method impedance intrinsic —— wave —— increment induced | 229 12 371 216 7, 321 211 276 295 176 176 335 335 7 288                            |

|                                                                                                                                                                                                                                    | 279                                                                             | Lentz, H.                                                                                                                                                                                                                          | 288                                                                                              | magnetism                                                                                                                                                                                                               |                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| —— magnetization<br>—— voltage                                                                                                                                                                                                     | 288                                                                             | light speed                                                                                                                                                                                                                        | 336                                                                                              | residual ——                                                                                                                                                                                                             | 275                                                                   |
| inductance                                                                                                                                                                                                                         | 200                                                                             | line                                                                                                                                                                                                                               | 550                                                                                              | magnetization                                                                                                                                                                                                           | 254, 258                                                              |
| mutual ——                                                                                                                                                                                                                          | 303                                                                             | —— element                                                                                                                                                                                                                         | 22                                                                                               | induced —                                                                                                                                                                                                               | 279                                                                   |
| self ——                                                                                                                                                                                                                            | 302                                                                             | vector                                                                                                                                                                                                                             | 23                                                                                               | permanent —                                                                                                                                                                                                             | 279                                                                   |
| induction                                                                                                                                                                                                                          | 302                                                                             | — integral                                                                                                                                                                                                                         | 22                                                                                               | residual ——                                                                                                                                                                                                             | 275                                                                   |
| electrostatic ——                                                                                                                                                                                                                   | 79                                                                              | transmission —                                                                                                                                                                                                                     | 344                                                                                              | satulation —                                                                                                                                                                                                            | 275                                                                   |
| — field                                                                                                                                                                                                                            | 365                                                                             | linearity                                                                                                                                                                                                                          | 6                                                                                                | spontaneous ——                                                                                                                                                                                                          | 274                                                                   |
| —— heating                                                                                                                                                                                                                         | 295                                                                             | lines                                                                                                                                                                                                                              | U                                                                                                | magnetomotance                                                                                                                                                                                                          | 267                                                                   |
| mutual —                                                                                                                                                                                                                           | 298                                                                             | — of electric force                                                                                                                                                                                                                | 60                                                                                               | magnetomotive force                                                                                                                                                                                                     | 267                                                                   |
| self —                                                                                                                                                                                                                             | 298                                                                             | — of magnetic force                                                                                                                                                                                                                | 214                                                                                              | magnetostatic field                                                                                                                                                                                                     | 215                                                                   |
| inner product                                                                                                                                                                                                                      | 18                                                                              | londitudinal wave                                                                                                                                                                                                                  | 334                                                                                              | mapping                                                                                                                                                                                                                 | 185                                                                   |
| -                                                                                                                                                                                                                                  | 121                                                                             |                                                                                                                                                                                                                                    | 209                                                                                              | conformal ——                                                                                                                                                                                                            | 185<br>185                                                            |
| insulating medium<br>insulator                                                                                                                                                                                                     |                                                                                 | loop<br>Lorentz                                                                                                                                                                                                                    | 209<br>148                                                                                       |                                                                                                                                                                                                                         | 317                                                                   |
|                                                                                                                                                                                                                                    | 78, 121                                                                         | —— condition                                                                                                                                                                                                                       |                                                                                                  | Marconi, G.                                                                                                                                                                                                             | 317                                                                   |
| integral                                                                                                                                                                                                                           | 22                                                                              | — force                                                                                                                                                                                                                            | 348<br>222                                                                                       | material                                                                                                                                                                                                                | 254                                                                   |
| contour —                                                                                                                                                                                                                          |                                                                                 |                                                                                                                                                                                                                                    |                                                                                                  | magnetic ——                                                                                                                                                                                                             | 254                                                                   |
| definite ——<br>line ——                                                                                                                                                                                                             | 10                                                                              | Lorenz-Lorentz                                                                                                                                                                                                                     | 149                                                                                              | Maxwell                                                                                                                                                                                                                 | 917                                                                   |
|                                                                                                                                                                                                                                    | 22                                                                              | loss                                                                                                                                                                                                                               | 100                                                                                              | 's equation                                                                                                                                                                                                             | 317                                                                   |
| volume ——                                                                                                                                                                                                                          | 28                                                                              | copper ——<br>—— dielectric                                                                                                                                                                                                         | 199                                                                                              | —, J.C.                                                                                                                                                                                                                 | 58, 318                                                               |
| internal resistance                                                                                                                                                                                                                | 201                                                                             |                                                                                                                                                                                                                                    | 375                                                                                              | mechatronics                                                                                                                                                                                                            | 142                                                                   |
| intrinsic impedance                                                                                                                                                                                                                | 335                                                                             | —— tangent                                                                                                                                                                                                                         | 360                                                                                              | Meissner effect                                                                                                                                                                                                         | 211, 278                                                              |
| <b>(</b> J)                                                                                                                                                                                                                        |                                                                                 | $(\mathbf{M})$                                                                                                                                                                                                                     |                                                                                                  | MEMS                                                                                                                                                                                                                    | 142                                                                   |
| Tanda                                                                                                                                                                                                                              |                                                                                 |                                                                                                                                                                                                                                    | 9                                                                                                | mesh                                                                                                                                                                                                                    | 209                                                                   |
| Joule —— heat                                                                                                                                                                                                                      | 100                                                                             | magnet                                                                                                                                                                                                                             | 3                                                                                                | metal                                                                                                                                                                                                                   | 77                                                                    |
|                                                                                                                                                                                                                                    | 198                                                                             | permanent ——                                                                                                                                                                                                                       | 255                                                                                              | method .                                                                                                                                                                                                                | 170                                                                   |
| · s law                                                                                                                                                                                                                            | 198                                                                             | magnetic                                                                                                                                                                                                                           | 01.4                                                                                             | image —                                                                                                                                                                                                                 | 176                                                                   |
| junction                                                                                                                                                                                                                           | 209                                                                             | —— charge<br>dia—— material                                                                                                                                                                                                        | 214                                                                                              | variational —                                                                                                                                                                                                           | 187                                                                   |
| (K)                                                                                                                                                                                                                                |                                                                                 | —— dipole                                                                                                                                                                                                                          | 255                                                                                              | — of virtual work                                                                                                                                                                                                       | 115                                                                   |
| Kelvin                                                                                                                                                                                                                             | 177                                                                             | *                                                                                                                                                                                                                                  | 256                                                                                              | Michell, J.                                                                                                                                                                                                             | 58                                                                    |
|                                                                                                                                                                                                                                    |                                                                                 | —— domain                                                                                                                                                                                                                          | 274                                                                                              | mobility                                                                                                                                                                                                                | 192                                                                   |
|                                                                                                                                                                                                                                    | 177                                                                             |                                                                                                                                                                                                                                    | 150                                                                                              |                                                                                                                                                                                                                         |                                                                       |
| Kirchhoff, G.                                                                                                                                                                                                                      | 209                                                                             | ferro                                                                                                                                                                                                                              | 150                                                                                              | moment                                                                                                                                                                                                                  | 0.0                                                                   |
|                                                                                                                                                                                                                                    |                                                                                 | ferro—— material                                                                                                                                                                                                                   | 255                                                                                              | electric dipole ——                                                                                                                                                                                                      | 98                                                                    |
| Kirchhoff, G.                                                                                                                                                                                                                      | 209                                                                             | ferro—— ferro—— material —— field 215                                                                                                                                                                                              | 255<br>, 220                                                                                     | electric dipole ——<br>momentum                                                                                                                                                                                          |                                                                       |
| Kirchhoff, G.  [L]  Landè g-factor                                                                                                                                                                                                 |                                                                                 | ferro—— material —— field 215 —— flux                                                                                                                                                                                              | 255<br>, 220<br>220                                                                              | electric dipole ——<br>momentum<br>angular ——                                                                                                                                                                            | 98<br>36                                                              |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace                                                                                                                                                                                        | 209<br>257                                                                      | ferro—— material ——— field 215 ————————————————————————————————————                                                                                                                                                                | 255<br>, 220<br>220<br>219                                                                       | electric dipole ——<br>momentum<br>angular ——<br>monopole                                                                                                                                                                | 36                                                                    |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace  equation                                                                                                                                                                              | 209<br>257<br>153                                                               | ferro—— ferro—— material ——— field 215 ————————————————————————————————————                                                                                                                                                        | 255<br>, 220<br>220<br>219<br>269                                                                | electric dipole —— momentum angular —— monopole electric ——                                                                                                                                                             | 36<br>96                                                              |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation  —, P.S.                                                                                                                                                                      | 209<br>257<br>153<br>42                                                         | ferro—— ferro—— material —— field 215 —— flux —— density leakage —— lines of ——                                                                                                                                                    | 255<br>, 220<br>220<br>219                                                                       | electric dipole —— momentum angular —— monopole electric —— magnetic ——                                                                                                                                                 | 36<br>96<br>322                                                       |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation ——, P.S.  Laplacian operator                                                                                                                                                  | 209<br>257<br>153<br>42<br>42                                                   | ferro—— ferro—— material —— field 215 —— flux —— density leakage —— lines of —— —— hysterisis                                                                                                                                      | 255<br>, 220<br>220<br>219<br>269<br>243                                                         | electric dipole —— momentum angular —— monopole electric —— magnetic —— motor                                                                                                                                           | 36<br>96<br>322<br>220                                                |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation ——, P.S.  Laplacian operator  Larmor radius                                                                                                                                   | 209<br>257<br>153<br>42                                                         | ferro—— ferro—— material —— field 215 —— flux —— density leakage —— lines of —— —— hysterisis phenomena                                                                                                                            | 255<br>, 220<br>220<br>219<br>269<br>243                                                         | electric dipole —— momentum angular —— monopole electric —— magnetic —— motor MRI                                                                                                                                       | 36<br>96<br>322<br>220<br>278                                         |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation —, P.S.  Laplacian operator  Larmor radius  law                                                                                                                               | 209<br>257<br>153<br>42<br>42<br>225                                            | ferro—— ferro—— material —— field 215 —— flux —— density leakage —— lines of —— —— hysterisis phenomena —— lines of force                                                                                                          | 255<br>, 220<br>220<br>219<br>269<br>243<br>276<br>214                                           | electric dipole —— momentum angular —— monopole electric —— magnetic —— motor MRI multipole expansion                                                                                                                   | 36<br>96<br>322<br>220<br>278<br>101                                  |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation —, P.S.  Laplacian operator  Larmor radius  law  Biot-Savert's —                                                                                                              | 209<br>257<br>153<br>42<br>42                                                   | ferro—— ferro—— material —— field 215 —— flux —— density leakage —— lines of —— —— hysterisis phenomena —— lines of force —— material                                                                                              | 255<br>, 220<br>220<br>219<br>269<br>243<br>276<br>214<br>254                                    | electric dipole —— momentum angular —— monopole electric —— magnetic —— motor MRI                                                                                                                                       | 36<br>96<br>322<br>220<br>278                                         |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation —, P.S.  Laplacian operator  Larmor radius  law  Biot-Savert's — conservation — of                                                                                            | 209<br>257<br>153<br>42<br>42<br>225<br>230                                     | ferro—— ferro—— material —— field 215 —— flux —— density leakage —— lines of —— —— hysterisis phenomena —— lines of force —— material —— monopole                                                                                  | 255<br>, 220<br>220<br>219<br>269<br>243<br>276<br>214<br>254<br>322                             | electric dipole —— momentum angular —— monopole electric —— magnetic —— motor MRI multipole expansion                                                                                                                   | 36<br>96<br>322<br>220<br>278<br>101                                  |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation ——, P.S.  Laplacian operator  Larmor radius  law  Biot-Savert's —— conservation —— of electric charge                                                                         | 209<br>257<br>153<br>42<br>42<br>225<br>230<br>6, 79                            | ferro— ferro— material —— field 215 —— flux —— density leakage —— lines of —— —— hysterisis phenomena —— lines of force —— material —— monopole para—— material                                                                    | 255<br>, 220<br>220<br>219<br>269<br>243<br>276<br>214<br>254<br>322<br>255                      | electric dipole — momentum angular — monopole electric — magnetic — motor MRI multipole expansion mutual inductance                                                                                                     | 36<br>96<br>322<br>220<br>278<br>101<br>303                           |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation ——, P.S.  Laplacian operator  Larmor radius  law  Biot-Savert's —— conservation —— of electric charge  Coulomb's ——                                                           | 209 257 153 42 42 225 230 6, 79 58                                              | ferro— ferro— material — field 215 — flux — density leakage — lines of — — hysterisis phenomena — lines of force — material — monopole para— material — permeability                                                               | 255<br>, 220<br>220<br>219<br>269<br>243<br>276<br>214<br>254<br>322<br>255<br>263               | electric dipole — momentum angular — monopole electric — magnetic — motor MRI multipole expansion mutual inductance $\[ \[ \] \] \] \] \] \[ \] \] \] \] \] \] \] \] \] \] \] \] \] $                                   | 36<br>96<br>322<br>220<br>278<br>101<br>303                           |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation —, P.S.  Laplacian operator  Larmor radius  law  Biot-Savert's — conservation — of electric charge  Coulomb's — Faraday's —                                                   | 209 257 153 42 42 225 230 6, 79 58 289                                          | ferro— ferro— material — field 215 — flux — density leakage — lines of — — hysterisis phenomena — lines of force — material — monopole para— material — permeability — pole                                                        | 255<br>, 220<br>220<br>219<br>269<br>243<br>276<br>214<br>254<br>322<br>255<br>263<br>214        | electric dipole — momentum angular — monopole electric — magnetic — motor MRI multipole expansion mutual inductance $\begin{bmatrix} \mathbf{N} \end{bmatrix}$ $\nabla$ (nabla) Neumann, F.                             | 36<br>96<br>322<br>220<br>278<br>101<br>303                           |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation —, P.S.  Laplacian operator  Larmor radius  law Biot-Savert's — conservation — of electric charge  Coulomb's — Faraday's — Joule's —                                          | 209 257 153 42 42 225 230 6, 79 58 289 198                                      | ferro—— ferro—— material —— field 215 —— flux —— density leakage —— lines of —— —— hysterisis phenomena —— lines of force —— material —— monopole para—— material —— permeability —— pole —— potential                             | 255<br>, 220<br>220<br>219<br>269<br>243<br>276<br>214<br>254<br>322<br>255<br>263               | electric dipole — momentum angular — monopole electric — magnetic — motor MRI multipole expansion mutual inductance $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$                                            | 36<br>96<br>322<br>220<br>278<br>101<br>303<br>29<br>288<br>209       |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation —, P.S.  Laplacian operator  Larmor radius  law Biot-Savert's — conservation — of electric charge  Coulomb's — Faraday's — Joule's — Ohm's —                                  | 209<br>257<br>153<br>42<br>42<br>225<br>230<br>6, 79<br>58<br>289<br>198<br>194 | ferro— ferro— material — field 215 — flux — density leakage — lines of — — hysterisis phenomena — lines of force — material — monopole para— material — permeability — pole — potential relative —                                 | 255<br>, 220<br>220<br>219<br>269<br>243<br>276<br>214<br>254<br>322<br>255<br>263<br>214<br>265 | electric dipole — momentum angular — monopole electric — magnetic — motor MRI multipole expansion mutual inductance $\begin{bmatrix} \mathbf{N} \end{bmatrix}$ $\nabla$ (nabla) Neumann, F. node norm                   | 36<br>96<br>322<br>220<br>278<br>101<br>303                           |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation —, P.S.  Laplacian operator  Larmor radius  law Biot-Savert's — conservation — of electric charge  Coulomb's — Faraday's — Joule's — Ohm's — Snell's —                        | 209 257 153 42 42 225 230 6, 79 58 289 198 194 361                              | ferro—— material —— field 215 —— flux —— density leakage —— lines of —— —— hysterisis phenomena —— lines of force —— material —— monopole para—— material —— permeability —— pole —— potential relative —— —— permeability         | 255<br>, 220<br>219<br>269<br>243<br>276<br>214<br>254<br>322<br>255<br>263<br>214<br>265        | electric dipole — momentum angular — monopole electric — magnetic — motor MRI multipole expansion mutual inductance $\begin{bmatrix} \mathbf{N} \end{bmatrix}$ $\nabla$ (nabla) Neumann, F. node norm nuclear           | 36<br>96<br>322<br>220<br>278<br>101<br>303<br>29<br>288<br>209<br>19 |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation —, P.S.  Laplacian operator  Larmor radius  law  Biot-Savert's — conservation — of electric charge  Coulomb's — Faraday's — Joule's — Ohm's — Snell's — leakage magnetic flux | 209 257 153 42 42 225 230 6, 79 58 289 198 194 361 269                          | ferro— ferro— material — field 215 — flux — density leakage — lines of — — hysterisis phenomena — lines of force — material — monopole para— material — permeability — pole — potential relative — — permeability — susceptibility | 255<br>, 220<br>219<br>269<br>243<br>276<br>214<br>254<br>322<br>255<br>263<br>214<br>265        | electric dipole — momentum angular — monopole electric — magnetic — motor MRI multipole expansion mutual inductance $\begin{bmatrix} \mathbf{N} \end{bmatrix}$ $\nabla$ (nabla) Neumann, F. node norm nuclear — fission | 36<br>96<br>322<br>220<br>278<br>101<br>303<br>29<br>288<br>209<br>19 |
| Kirchhoff, G.  [L]  Landè g-factor  Laplace equation —, P.S.  Laplacian operator  Larmor radius  law Biot-Savert's — conservation — of electric charge  Coulomb's — Faraday's — Joule's — Ohm's — Snell's —                        | 209 257 153 42 42 225 230 6, 79 58 289 198 194 361                              | ferro—— material —— field 215 —— flux —— density leakage —— lines of —— —— hysterisis phenomena —— lines of force —— material —— monopole para—— material —— permeability —— pole —— potential relative —— —— permeability         | 255<br>, 220<br>219<br>269<br>243<br>276<br>214<br>254<br>322<br>255<br>263<br>214<br>265        | electric dipole — momentum angular — monopole electric — magnetic — motor MRI multipole expansion mutual inductance $\begin{bmatrix} \mathbf{N} \end{bmatrix}$ $\nabla$ (nabla) Neumann, F. node norm nuclear           | 36<br>96<br>322<br>220<br>278<br>101<br>303<br>29<br>288<br>209<br>19 |

| Constedt, H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |           |                      |         |                          |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|----------------------|---------|--------------------------|-----|
| Consted, H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 101                     |           | effective ——         | 384     | Robison, J.              | 58  |
| Cersted, H         214         — factor         385         Sativation magnetization         275           —, G.S.         194         Poynting         Savart           —'s law         194         —, J.         342         Biot.—'s law         230           Ohmic los         275         principle         scalar         12           Open surface         25         superposition         6         cproduct         18           orthogonal coordinate system 18         superposition         6         cebecked effect         211           paramagnetic material         255         ross         18         separation of variables         161           paramagnetic material         255         nouter         18         separation of variables         161           paramagnetic material         255         nouter         18         separation of variables         161           paramagnetic material         255         pounter         18         separation of variables         161           paramagnetic material         255         pounter         18         separation of variables         161           permedidifferential         9         port electric effect         149         —unit         140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [O]                     |           | electric ——          | 198     | ,                        |     |
| 一字                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oersted, H              | 214       |                      | 385     |                          |     |
| Silaw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ohm                     |           | reactive ——          | 385     | satulation magnetization | 275 |
| Ohmic loss         198         — vector         342         —, F.         229           Onnes, H. K.         278         principle         scalar         12           open surface         25         orthogonal coordinate system 18         superposition —         6         — product         18           outer product         18         superposition —         6         Seebeck effect         211           parameter         255         town         18         semiconductor         78           parameter         225         town         18         semiconductor         78           parameter         225         town         18         superation of variables         161           Parameter         229         vector         18         — #fc         4           PEC         346         [Q]         IQ         — #fc         — #fc         — #fc         24         — unit         4           Perfect diamagnetism         278         perfect diamagnetism         278         persectid diamagnetism         278         selectic         294           permeability         215         26         — approximation         374         peritular         46         peritular         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ——, G.S.                | 194       | Poynting             |         | Savart                   |     |
| Onnes, H. K.         278         principle superposition         6 cuperposition         6 cuperposition         2 cuperposition         6 cuperposition         5 cuperposition         6 cuperposition         2 cuperposition         2 cuperposition         6 cuperposition         6 cuperposition         6 cuperposition         6 cuperposition         2 cuperposition<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 's law                  | 194       | , J.                 | 342     | Biot- —-'s law           | 230 |
| open surface orthogonal coordinate system 18 touter product 25 touter 18 touter 18 touter product 255 touter 18 touter 18 touter 19 touter product 255 touter 18 touter 18 touter 19 touter 255 touter 18 touter 18 touter 19 touter 255 touter 18 touter 18 touter 19 to  | Ohmic loss              | 198       | vector               | 342     | , F.                     | 229 |
| Outhogonal coordinate system 18 outer product 18   Product 5   Product 5   Product 5   Product 5   Product 5   Product 5   Product 6   Product 6   Product 6   Product 6   Product 7       | Onnes, H. K.            | 278       | principle            |         | scalar                   | 12  |
| Paramagnetic material   255   cross   18     | open surface            | 25        | superposition ——     | 6       | product                  | 18  |
| Paramagnetic material   255   niner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | orthogonal coordinate s | system 18 | uncertainty ——       | 2       | Seebeck effect           | 211 |
| Paramagnetic material   255   inner   18   SI   SI   Inner   Interest   Inner    | outer product           | 18        | product              |         | self inductance          | 302 |
| Cot   18   Separation of variables   101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [D]                     |           | cross ——             | 18      | semiconductor            | 78  |
| parameter         22 partial differential         29 vector —         18 vector —         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐         ### ☐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71.1                    |           | dot                  | 18      | separation of variables  | 161 |
| Partial differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | paramagnetic material   | 255       |                      | 18      | SI                       |     |
| — coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | parameter               |           |                      | 18      | • •                      | 4   |
| PEC   346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | partial differential    | 9         | vector —             | 18      | unit                     | 4   |
| PEC         346         IQI           Peltier effect         212         quark         2         — effect         294           perfect diamagnetism         278         quark         2         — effect         294           permed         337         — approximation         374         solution         solution           permeanet         267         — field         365         particular—         46           permeance         267         — stationary current         301         singular         46           permittivity         58, 121         radian         5, 70         Sommerfeld, A         322           phase constant         360         radiation field         365         speed of light         38           phesor         383         reactive power         385         spherical         — coordinate system         17           plane wave         334         — permeability         263         spherical         — wave         340           Poisson's equation         44, 153         — permeability         263         static         — wave         320           poincization         123         relaction time         191, 300         stationary current         191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 9         | pyro electric effect | 149     | singular solution        | 46  |
| Peltier effect   212   quark   2   quark   2   quark   361   365   quasi   276   quark   277   quark   278   quark   278   quark   278   quark   278   quark   279   quark   279   quark   279   quark   279   quark   279   quark   279   quark   270   qua   |                         |           | [0]                  |         |                          |     |
| Perfect diamagnetism   278   quasi   — -static   — -   | -                       |           | - •-                 |         |                          | *   |
| Deriod   337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |           | <u> </u>             | 2       |                          |     |
| Permanent magnetization   279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                       |           | *                    |         |                          | 361 |
| permeability         215, 263         — field         365         particular—         46           permeance         267         — stationary current         301         singular —         46           permittivity         58, 121         [R]         Sommerfeld, A space charge layer space space charge layer space charge layer space charge layer space space charge layer space space charge layer space charge layer space of light space space charge layer space space charge layer space space charge layer space space of light space charge layer space spac                                                                                                                                                                                                 | 1                       |           |                      |         |                          |     |
| permeance         267         —stationary current         301         singular —         46           permittivity         58, 121         [R]         Singular —         46           permittivity         58, 121         [R]         Sommerfeld, A         322           pomples         358         radian         5, 70         space charge layer         188           phase constant         360         radiation field         365         spherical         36           photovoltaic effect         200         rectangular coordinate system 13         385         spherical         — coordinate system 13         — wave         340           phase constant         360         rectangular coordinate system 13         — wave         340         — magnetic         — coordinate system 13         — wave         340         — magnetic         SQUID         274         SQUID         278         SQUID         278         SQUID         278         Static         — magnetization         274         SQUID         278         Static         — magnetization         275         SQUID         278         Static         46         279         Static         — magnetization         275         Stratton's theorem         42         24         24         24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |           |                      |         | O                        |     |
| permittivity         58, 121 complex —         358 relative —         121 radian         5, 70 speed of light         336 spherical           phase constant         360 phase constant         360 radiation field         365 spherical         360 spherical           phesor         383 reactive power         385 spherical         — coordinate system         17 may sepherical           photovoltaic effect         200 piezo electric effect         149 prelative         — coordinate system         17 may sepherical           plane wave         334 phase may sepherical         — coordinate system         17 may sepherical           PMC         346 phase may sepherical         — coordinate system         17 may sepherical           PMC         346 phase may sepherical         — coordinate system         17 may sepherical           PMC         346 phase may sepherical         — coordinate system         17 may sepherical           PMC         346 phase may sepherical         — coordinate system         17 may sepherical           PMC         346 phase may sepherical         — coordinate system         17 may sepherical           PMC         346 phase may sepherical         — coordinate system         17 may sepherical           PMC         344 phase may sepherical         — sepherical         — coordinate system         17 may sepherical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ,         |                      |         | -                        |     |
| Complex —         358         IRI         space charge layer         188           relative —         121         radian         5, 70         speed of light         336           phase constant         360         radiation field         365         spherical           phesor         383         reactive power         385         — coordinate system         17           photovoltaic effect         200         rectangular coordinate system 13         — wave         340           piezo electric effect         149         relative         spontaneous magnetization         274           PMC         346         — permeability         263         static           Poisson's equation         44, 153         — susceptibility         262         quasi—field         365           polarization         123         relaxation time         191, 300         stationary current         191           — charge         123         reluctance         267         steady-state response         381           electronic         146         — magnetism         275         stratton's theorem         42           Popov, A.S.         317         — magnetism         275         superconductivity         211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                       |           |                      | 301     |                          |     |
| relative — 121 radian 5, 70 speed of light 336 phase constant 360 radiation field 365 phesor 383 reactive power 385 — coordinate system 17 photovoltaic effect 200 rectangular coordinate system 18 spontaneous magnetization 274 plane wave 334 — magnetic SQUID 278 posson's equation 44, 153 — susceptibility 262 quasi— field 365 polarization 123 relaxation time 191, 300 stationary current 191 — charge 123 reluctance 267 electronic — 146 residual 50 — magnetic flux density 275 posson's electric — 149 resistance 149 resistance 150 magnetic — 265 resistivity 194 closed — 25 retarded — 355 response 150 magnetic — 255 power 150 magneti — 238 retarded potential 150 magneti — 255 power 150 magneti — 384 retarded potential 150 magneti — 384 retarded potential 150 magneti — 385 retarded potential 150 magneti — 386 retarded potential 150 magneti — 387 susceptibility 248 susceptibility 248 popen — 255 power 150 magneti — 387 retarded potential 355 electric — 1516 potential 365 retarded potential 365 power 150 magneti — 381 susceptibility 262 power 150 magneti — 381 retarded potential 365 power 150 magneti — 381 popen — 255 power 150 magneti — 384 retarded potential 355 electric — 1526 power 150 magneti — 384 retarded potential 365 power 150 magneti — 385 power 150 power 1 | - *                     | ,         | (R)                  |         | ,                        | _   |
| phase constant         360         radiation field         365         spherical           phesor         383         reactive power         385         — coordinate system         17           photovoltaic effect         200         rectangular coordinate system 13         — wave         340           piezo electric effect         149         relative         spontaneous magnetization         274           plane wave         334         — magnetic         SQUID         278           PMC         346         — permeability         263         static           Poisson's equation         44, 153         — susceptibility         262         quasi- — field         365           polarization         123         relaxation time         191, 300         stationary current         191           — charge         123         residual         Stokes' theorem         42           orientation         146         — magnetic flux density 275         Stratton's theorem         44           Popov, A.S.         317         — magnetization         275         superconductivity         211           position vector         14         electric —         194         superposition principle         6           electric —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                       |           |                      | 0       |                          |     |
| Phesor   383   reactive power   385   — coordinate system   17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |           |                      |         | -                        | 336 |
| photovoltaic effect         200         rectangular coordinate system 13         — wave         340           piezo electric effect         149         relative         spontaneous magnetization         274           plane wave         334         — magnetic         SQUID         278           PMC         346         — permeability         263         static           Poisson's equation         44, 153         — susceptibility         262         quasi-— field         365           polarization         123         relaxation time         191, 300         stationary current         191           — charge         123         reluctance         267         steady-state response         381           electronic         146         residual         Stokes' theorem         42           orientation         146         — magnetism         275         Stratton's theorem         44           Popov, A.S.         317         — magnetization         275         superconductivity         211           position vector         14         resistance         high temperature         211           diffusion         188         electric         194         superposition principle         6           electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                       |           |                      |         | *                        | 177 |
| piezo electric effect         149         relative         spontaneous magnetization         274           plane wave         334         — magnetic         SQUID         278           PMC         346         — permeability         263         static           Poisson's equation         44, 153         — susceptibility         262         quasi—field         365           polarization         123         relaxation time         191, 300         stationary current         191           — charge         123         reluctance         267         steady-state response         381           electronic —         146         residual         Stokes' theorem         42           orientation —         146         — magnetism         275         Stratton's theorem         42           Popov, A.S.         317         — magnetism         275         superconductivity         211           position vector         14         magnetizeric —         194         superconductor         278           electric —         82         internal —         201         superconductor         278           electric —         82         internal —         201         superconductor         278           electric — <td>•</td> <td></td> <td>•</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                       |           | •                    |         |                          |     |
| plane wave         334         — magnetic         SQUID         278           PMC         346         — permeability         263         static           Poisson's equation         44, 153         — susceptibility         262         quasi-— field         365           polarization         123         relaxation time         191, 300         stationary current         191           — charge         123         reluctance         267         steady-state response         381           electronic         146         — magnetic flux density 275         Stratton's theorem         42           orientation         146         — magnetism         275         superconductivity         211           position vector         14         — magnetization         275         superconductor         278           potential         resistance         high temperature         211           diffusion         188         electric         194         superposition principle         6           electric         82         internal         201         superposition principle         6           electrostatic         82         resistivity         194         closed         — current density         248 <td< td=""><td>•</td><td></td><td></td><td>tem 13</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                       |           |                      | tem 13  |                          |     |
| PMC         346         — permeability         263         static           Poisson's equation         44, 153         — susceptibility         262         quasi—— field         365           polarization         123         relaxation time         191, 300         stationary current         191           — charge         123         reluctance         267         steady-state response         381           electronic         146         residual         Stokes' theorem         42           orientation         146         — magnetic flux density 275         Stratton's theorem         44           Popov, A.S.         317         — magnetism         275         superconductivity         211           position vector         14         — magnetization         275         superconductor         278           potential         resistance         high temperature         211           diffusion         188         electric         194         superposition principle         6           electric         82         internal         201         superposition principle         6           electrostatic         82         resistivity         194         closed         — current density         248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                       | -         |                      |         | -                        |     |
| Poisson's equation         44, 153         — susceptibility         262         quasi—— field         365           polarization         123         relaxation time         191, 300         stationary current         191           — charge         123         reluctance         267         steady-state response         381           electronic         146         residual         Stokes' theorem         42           orientation         146         — magnetic flux density 275         Stratton's theorem         44           Popov, A.S.         317         — magnetism         275         superconductivity         211           position vector         14         — magnetization         275         superconductor         278           potential         resistance         high temperature         211         superconductor         278           electric         82         internal         201         superposition principle         6           electric         82         magnetic         267         surface           magnetic         265         resistivity         194         closed         — current density         248           vector         235         steady-state         381         open <td< td=""><td>•</td><td></td><td></td><td>263</td><td>•</td><td>210</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                       |           |                      | 263     | •                        | 210 |
| polarization         123         relaxation time         191, 300         stationary current         191           — charge         123         reluctance         267         steady-state response         381           electronic         146         residual         Stokes' theorem         42           orientation         146         magnetic flux density 275         Stratton's theorem         44           Popov, A.S.         317         magnetism         275         superconductivity         211           position vector         14         magnetization         275         superconductor         278           potential         resistance         high temperature         211           diffusion         188         electric         194         superposition principle         6           electric         82         internal         201         superposition principle         6           electrostatic         82         magnetic         267         surface           magnetic         265         resistivity         194         closed         —         25           retarded         355         response         —         current density         248           vector         235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                       |           |                      |         |                          | 365 |
| — charge         123         reluctance         267         steady-state response         381           electronic         — 146         residual         Stokes' theorem         42           orientation         — 146         — magnetic flux density 275         Stratton's theorem         44           Popov, A.S.         317         — magnetism         275         superconductivity         211           position vector         14         — magnetization         275         superconductor         278           potential         resistance         high temperature         211           diffusion         — 188         electric         — 194         superposition principle         6           electric         — 82         internal         — 201         superposition principle         6           electrostatic         — 82         magnetic         — 267         surface           magnetic         — 265         resistivity         194         closed         — current density         248           vector         — 235         steady-state         381         open         — 25           power         transient         — 381         susceptibility         126           active         — 384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                       | ,         | 1 0                  |         | •                        |     |
| electronic —         146         residual         Stokes' theorem         42           orientation —         146         — magnetic flux density 275         Stratton's theorem         44           Popov, A.S.         317         — magnetism         275         superconductivity         211           position vector         14         — magnetization         275         superconductor         278           potential         resistance         high temperature —         211           diffusion —         188         electric —         194         superposition principle         6           electric —         82         internal —         201         superposition principle         6           electrostatic —         82         magnetic —         267         surface           magnetic —         265         resistivity         194         closed —         25           retarded —         355         response         —         current density         248           vector —         235         steady-state —         381         open —         25           power         transient —         381         susceptibility         126           active —         384         retarded potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                       |           |                      | ,       | *                        |     |
| orientation —         146         — magnetic flux density 275         Stratton's theorem         44           Popov, A.S.         317         — magnetism         275         superconductivity         211           position vector         14         — magnetization         275         superconductor         278           potential         resistance         high temperature —         211           diffusion —         188         electric —         194         superconductor         278           electric —         82         internal —         201         superposition principle         6           electric —         82         magnetic —         267         surface           magnetic —         265         resistivity         194         closed —         25           retarded —         355         response         —         current density         248           vector —         235         steady-state —         381         open —         25           power         transient —         381         susceptibility         126           active —         384         retarded potential         355         electric —         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | O .                     |           |                      |         |                          |     |
| Popov, A.S.         317         — magnetism         275         superconductivity         211           position vector         14         — magnetization         275         superconductor         278           potential         resistance         high temperature —         211           diffusion —         188         electric —         194         superdiamagnetism         278           electric —         82         internal —         201         superposition principle         6           electrostatic —         82         magnetic —         267         surface           magnetic —         265         resistivity         194         closed —         25           retarded —         355         response         —         current density         248           vector —         235         steady-state —         381         open —         25           power         transient —         381         susceptibility         126           active —         384         retarded potential         355         electric —         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |           |                      | ity 275 |                          | 44  |
| position vector         14         — magnetization         275         superconductor         278           potential         resistance         high temperature —         211           diffusion —         188         electric —         194         superdiamagnetism         278           electric —         82         internal —         201         superposition principle         6           electrostatic —         82         magnetic —         267         surface           magnetic —         265         resistivity         194         closed —         25           retarded —         355         response         —         current density         248           vector —         235         steady-state —         381         open —         25           power         transient —         381         susceptibility         126           active —         384         retarded potential         355         electric —         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |           |                      |         |                          |     |
| diffusion —         188         electric —         194         superdiamagnetism         278           electric —         82         internal —         201         superposition principle         6           electrostatic —         82         magnetic —         267         surface           magnetic —         265         resistivity         194         closed —         25           retarded —         355         response         —         current density         248           vector —         235         steady-state —         381         open —         25           power         transient —         381         susceptibility         126           active —         384         retarded potential         355         electric —         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - :                     | 14        |                      | 275     |                          | 278 |
| electric —         82         internal —         201         superposition principle         6           electrostatic —         82         magnetic —         267         surface           magnetic —         265         resistivity         194         closed —         25           retarded —         355         response         — current density         248           vector —         235         steady-state —         381         open —         25           power         transient —         381         susceptibility         126           active —         384         retarded potential         355         electric —         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | potential               |           | resistance           |         | high temperature —       | 211 |
| electrostatic —         82         magnetic —         267         surface           magnetic —         265         resistivity         194         closed —         25           retarded —         355         response         — current density         248           vector —         235         steady-state —         381         open —         25           power         transient —         381         susceptibility         126           active —         384         retarded potential         355         electric —         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | diffusion ——            | 188       | electric ——          | 194     | superdiamagnetism        | 278 |
| magnetic —         265         resistivity         194         closed —         25           retarded —         355         response         — current density         248           vector —         235         steady-state —         381         open —         25           power         transient —         381         susceptibility         126           active —         384         retarded potential         355         electric —         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | electric ——             | 82        | internal ——          | 201     | superposition principle  | 6   |
| retarded —         355         response         — current density         248           vector —         235         steady-state —         381         open —         25           power         transient —         381         susceptibility         126           active —         384         retarded potential         355         electric —         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | electrostatic ——        | 82        | magnetic ——          | 267     | surface                  |     |
| vector —         235         steady-state —         381         open —         25           power active —         384         retarded potential         381         susceptibility         126           384         retarded potential         355         electric —         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | 265       | resistivity          | 194     | closed ——                | 25  |
| vector —         235         steady-state —         381         open —         25           power active —         384         retarded potential         381         susceptibility         126           384         retarded potential         355         electric —         126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | 355       | response             |         | —— current density       | 248 |
| active — 384 retarded potential 355 electric — 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vector —                | 235       | ,                    | 381     | open ——                  | 25  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nower                   |           | transient            | 381     | susceptibility           | 126 |
| apparent —— 384   RFID 298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | power                   |           | or ansient           |         |                          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                       | 384       |                      |         | electric ——              | 126 |

| <b>(</b> T)        |          | [U]                   |     | virtual work       |     |
|--------------------|----------|-----------------------|-----|--------------------|-----|
| 1-1                |          |                       |     | method of ——       | 115 |
| tesla(T)           | 219      | uncertainty principle | 2   | Volta, A.          | 5   |
| theorem            |          | unit                  |     | voltage            |     |
| Gauss' ——          | 35       | —— normal vector      | 25  | induced ——         | 288 |
| Green's ——         | 44       | SI ——                 | 4   | induction ——       | 288 |
| Stokes' ——         | 42       | vector                | 14  | volume integral    | 28  |
| Stratton's ——      | 44       | [37]                  |     | [337]              |     |
| thermocouple       | 211      | [V]                   |     | (W)                |     |
| Thomson W.         | 177      | variational method    | 187 | wave               |     |
| time               |          | vector                | 12  | electromagnetic —— | 336 |
| constant           | 300      | area element ——       | 26  | —— equation        | 332 |
| mean free ——       | 191      | basis ——              | 14  | —— impedance       | 335 |
| relaxation ——      | 191, 300 | line element ——       | 23  | longitudinal ——    | 334 |
| total differential | 10       | position ——           | 14  | number             | 337 |
| transient          |          | —— potential          | 235 | plane ——           | 334 |
| current            | 191      | Poynting —            | 342 | spherical ——       | 340 |
| response           | 381      | —— product            | 18  | transverse ——      | 334 |
| transmission line  | 344      | unit normal ——        | 25  | wavelength         | 337 |
| transverse wave    | 334      | unit ——               | 14  | Weber, W.E.        | 215 |

#### —— 著 者 略 歴 —

宇野 亨 (うの とおる)

1980年 東京農工大学工学部電気工学科卒業

1985年 東北大学大学院博士課程修了(電気及通信工学専攻)

工学博士

1985年 東北大学助手

1991年 東北大学助教授

1994年 東京農工大学助教授

1998年 東京農工大学教授

現在に至る

#### 白井 宏(しらい ひろし)

1980年 静岡大学工学部電気工学科卒業

1986年 アメリカ合衆国ポリテクニック大学大学院

博士課程修了(電気工学専攻)

Ph. D.

1986年 ポリテクニック大学研究員

1987年 中央大学専任講師

1988年 中央大学助教授

1998年 中央大学教授

現在に至る

#### 電磁気学

Electromagnetics

© Toru Uno, Hiroshi Shirai 2010

2010年6月30日 初版第1刷発行

検印省略

者 字 亨 野 É 井 宏

株式会社 コロナ社 発行者

代表者 牛来真也

印刷所 三美印刷株式会社

112-0011 東京都文京区千石 4-46-10

発行所 株式会社 コロナ社

CORONA PUBLISHING CO., LTD.

Tokyo Japan

振替 00140-8-14844 · 電話 (03) 3941-3131 (代)

ホームページ http://www.coronasha.co.jp

ISBN 978-4-339-00814-2

(柏原)

(製本:グリーン)

Printed in Japan



無断複写・転載を禁ずる

落丁・乱丁本はお取替えいたします