水理学解説

工学博士 柴山 知也 【編著】

博士(工学) 髙木 泰士

博士(工学) 鈴木 崇之

博士(工学) 三上 貴仁

博士(工学) 髙畠 知行

博士(工学) 中村 亮太

博士(工学) 松丸 亮

まえがき

この教科書は、大学学部に所属する学生の皆さんに向けて、水理学の内容を解説することを目的に書かれたものです。読者はおおむね大学2年生であることを想定していますので、高校で学ぶ数学と物理、さらに大学の低学年で学ぶ数学と力学の知識を前提としています。本書では、小学校、中学校、高校および大学の初学年で学んできたことが、水理学を学ぶ上でどのように役に立つかを読者の皆さんに実感してもらえるように配慮して記述したつもりです。皆さんから見れば、小学校以来の長期間にわたる学びは、いよいよ専門家に必要な学識として実を結ぶ段階に至ったということになります。

私が45年ほど前に大学に入学した際、先生方の講義があまりにも不親切に感じられ、好きになれなかったことを覚えています。先生方が講義で説明している大切な内容が、文字で教科書に書かれていないことが多かったのです。こうした経験を踏まえて、本書では講義中に教員が講義内容を理解してもらうために語る解説を、できる限り話し言葉に近い形で、本文中に記述しようと試みました。本文中で記述しきれない演習問題解答のためのプログラムや水理現象の動画、カラー写真などは、別途Web上に掲載していますので適宜参照してください^{†1}。

ところで、皆さんは、なぜ水理学を学ぼうとしているのでしょうか。この質問に答えるには、19世紀末に立ち戻って、近代社会の成り立ちから考えてみる必要があります。フランスの社会学者であるエミール・デュルケムは、『社会分業論』(1893年)の中で、近代社会の成り立ちについて分析しています^{†2}。伝統的な社会(中世の社会から続く「アンシャン・レジーム」と呼ばれるフランスの旧体制)では、同質的な人々が協力して社会を運営していました。類似した個人が結びつく単純な社会関係は、「機械的連帯」と呼ばれています。これに対して近代社会では、分業の発達により、異質な社会集団がそれぞれ別の機能を果たしながら協力して社会を運営するようになりました。異質な個人が機能的差異によって結合す

^{† 1} 本書の書籍詳細ページ (http://www.coronasha.co.jp/np/isbn/9784339052688/) を参照してください (コロナ社 Web ページから書名検索でもアクセス可能)。

^{†2} 日本語訳は、井伊玄太郎 訳:社会分業論(上)(下)(講談社学術文庫 873·874)、講談社(1989)で読むことができます。

ii まえがき

る社会関係は、「有機的連帯」と呼ばれています。技術者の集団、医療者の集団、法曹の集団など、それぞれの職業集団が異なった職能を発揮し、別の機能を担うことが近代社会では必要になりました。

皆さんが水理学を学ぶ必要があるのは、大学卒業後に、土木技術者によって構成される社会集団の一員として、社会的な機能を果たしていくことが期待されているからです。大学は学部や学科ごとにそれぞれ別の分野の専門家を育成する高等教育機関ですから、学部や学科によって学ぶ内容が大きく異なります。水理学を学ぶのは、土木技術者を育てることを目的とした学科の学生のみということになります。この点が、多くの児童や生徒が共通の教科を学習する小学校から高校までの教育と大きく異なる点です。

皆さんが水理学を学ぶことを怠れば、将来、何が起こるでしょうか。数十年の時を経て社会の構成員の世代交代が生じますが、そのときに強力な台風が日本列島を襲ったとしたら、誰がどのようにして高潮・高波から沿岸の地域社会を守るのでしょうか。あるいは大雨の際に河川が増水し、堤防を超えて水が氾濫したら、どうするのでしょうか。もし水理学を修めた土木技術者がいなければ、こうした災害時に対処したり、防災策を提案したりする技術者が誰もいなくなってしまうことになります。このような時代が来ないように、社会を支える土木技術者を目指す皆さんには、是非とも水理学をしっかりと勉強して、土木工学の専門家になってほしいと思います。これから皆さんがそのための努力を重ねていく上で、本書がその助けになることを願っています。

なお、本書の企画・出版にあたっては、コロナ社の皆様にご尽力いただきました。記して 謝意を表します。

2019年7月

執筆者代表 柴山 知也

執筆分扣

柴山	知也	1,2章 付録A.1
髙木	泰士	8,9章,コラム2,8,9
鈴木	崇之	7章
三上	貴仁	2, 6章, 付録 A.1, A.3
髙畠	知行	5章 付録 A.2
中村	亮太	3, 4章
松丸	亮	コラム 1, 3, 4, 5, 6, 7

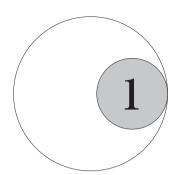
(2019年7月現在)

目 次

1. 水理学を用いてなにができるのか

2. 力の釣合いと三つの保存則

2.1 水	理学の観察方法3
2.2 力	の 釣 合 い4
2.3 三	つの保存則とその関係性
2.3.1 2.3.2 2.3.3 2.3.4 演習	質量の保存則 6 運動量の保存則 (微視的に観察した場合) 7 運動量の保存則 (巨視的に観察した場合) 10 力学的エネルギーの保存則 (ベルヌイの定理) 11 問題
	3. 動べていないがのガチ・部へガチ
3.1 静	水圧の導出14
	水圧の導出
3.2 平	面に作用する水の圧力 ····································
3.2 平 3.2.1	面に作用する水の圧力
3.2 平 3.2.1 3.2.2 3.3 浮	面に作用する水の圧力
3.2 平 3.2.1 3.2.2 3.3 浮 3.4 浮 3.4.1 3.4.2	面に作用する水の圧力 16 平面に作用する圧力の導出 16 長方形斜面にかかる水の圧力(単純化した事例) 18 カ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2 平 3.2.1 3.2.2 3.3 浮 3.4 浮 3.4.1 3.4.2 演 習	面に作用する水の圧力 16 平面に作用する圧力の導出 16 長方形斜面にかかる水の圧力(単純化した事例) 18 力 19 体の安定 21 浮体の種類 21


4. 粘性のない水の運動:完全流体

4.1 ベクトル解析の基礎28
4.2 流線・流跡線29
4.3 非回転 (渦なし) 流れの基礎
4.4 流 れ 関 数32
4.5 複素速度ポテンシャル34
4.5.1 水平方向に進む流れの場 34
4.5.2 湧出し, 吸込み (1点から流出・流入する流れ) 35
4.5.3 渦 糸 36
演 習 問 題
引用·参考文献 ······38
5. パイプの中の水の流れ:管水路の水理
5.1 粘 性 流 体
5.2 ナビエ・ストークスの方程式 ···········41
5.3 層 流
5.3.1 層流の流速分布① (クウェット流とポアズイユ流) 43
5.3.2 層流の流速分布②(ハーゲン・ポアズイユ流) 46
5.4 乱 流
5.4.1 レイノルズの実験 47
5.4.2 レイノルズ数 48
5.5 レイノルズの方程式49
5.6 レイノルズ応力51
5.6.1 レイノルズ応力の物理的イメージ 51
5.6.2 レイノルズ応力の評価 54
5.7 乱流の流速分布 55
5.8 管路流れの基礎方程式57
5.9 摩 擦 損 失
5.9.1 層流の摩擦損失係数 60
5.9.2 乱流の摩擦損失係数 61
OTOTAL HARMON PARTICIPATION OF

		目	次_	V
5.10 形	状 損 失			63
	断面変化による形状損失 64			
	流出・流入による損失 66 曲がりおよび屈折による損失 67			
	そのほかの形状損失 67			
	ネルギー線と動水勾配線			67
	イフォンの流れ			
	岐・合流管路の流れ			
	問題			
引用・参	考文献			··· 74
	6. 川の中の水の運	動:開水路の水理		
6.1 開ラ	水路の流れ			75
6.1.1	管水路の流れと開水路の流れ 75			
	開水路の流れを表す物理量 76			
	開水路の流れの種類 77			
6.2 等	流			79
	等 流 と は 79			
	平均流速公式 81			
	マニングの式を用いた計算 81 流 と 射 流			റാ
			• • • • • • • • • • • • • • • • • • • •	83
	比エネルギー図における常流と射流 83 段差を越える流れ 85			
	流 れ の 遷 移 86			
	水と段波			27
6.4.1				07
6.4.2				
	デニー ディー・ ・ デ流の水面形			92
	不等流を表す基礎方程式 92			
	限界勾配と緩勾配水路・急勾配水路 94			
	緩勾配水路・急勾配水路の水面形 95			
6.5.4	水面形の具体例と描き方 97			
6.6 不	等流計算			. 101
6.6.1	不等流計算の基本的な考え方 101			
6.6.2	常流・射流と不等流計算 102			

vi <u></u>	
6.7 非 定 常 流	104
演 習 問 題	106
引用・参考文献	109
7. 海の中の水の運動:波の水理	
7.1 水面の波の運動	110
7.1.1 波 の 諸 元 111	
7.1.2 波 の 性 質 111	
7.1.3 波 の 分 類 112	
7.2 波の理論と変形	113
7.2.1 微小振幅波理論 113 7.2.2 波の波長と波速 116	
7.2.3 水粒子の運動速度とその軌跡 118	
7.2.4 波のエネルギーとその輸送 119	
7.2.5 波 の 変 形 121	
7.3 ラディエーション応力	
演 習 問 題	
引用・参考文献	125
8. 模型実験と相似則	
8.1 水理模型実験	126
8.2 相 似 則	127
8.3 フルード相似則	127
8.4 レイノルズ相似則	128
8.5 次 元 解 析	129
演 習 問 題	131
9. 水理学の応用	
9.1 災害への対応	132
9.1.1 河 川 洪 水 132	
9.1.2 津 波 134	
9.1.3 高 潮 <i>138</i>	

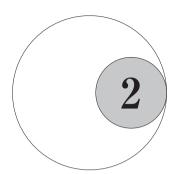
		次vii
9.2 環境問題への対応		141
9.2.1 海 面 上 昇 141		
9.2.2 密度流,塩水遡上 142		
9.2.3 地 下 水 144		
9.2.4 水 質 146		
演 習 問 題		148
引用・参考文献		149
付 録		150
A.1 覚えておくべき二つのパラメータと五つの数	效式	150
A.2 主要な水理学関連用語の日英対訳表		
A.3 水理学の歴史年表 ·······		152
演習問題解答		154
索 引		
X		200
∠コ ラ ム		
コラム 1 : 水理学という学問分野と実社会		12
コラム2 : 浮体の水理学, 土木工学と船舶工学の境界	領域	24
コラム3 : 管路の設計と水理学		69
コラム4 :河川の計画と水理学(開水路の水理)		
[コラム5]:河川施設の設計と水理学		
[コラム6]: 高度な氾濫解析と水理学		
コラム7]:海岸防災・地域の防災と水理学・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
コラム8:高潮の常識を変えた台風ハイヤン		
コラム9:感潮域の水理		143

水理学を用いてなにができるのか

水理学では、土木工学分野をはじめとして、その関連分野である都市工学、都市基盤学、社会環境工学などの分野へ流体力学を応用するための準備をします。具体的には人間生活と深く結びついている水の流れに着目します。平時には人間生活に欠かせない水を供給してくれる川が、台風の来襲時には人間を襲う荒れ狂う川になることもあります。恵みと脅威という二つの側面を持つ水の流れを人間がうまく制御することは水理学を使ってよく考えないとできません。

水を生活に使うことは有史以来の定住を始めた人類の課題でしたので、経験工学としての 土木工学は文明の始まりとともに昔からありました。経験則に基づく伝統的な工法を 18世 紀以来の古典力学を用いて合理的に再編し、建設の理論を流体力学を用いて精緻化してきた のが現在の水理学ということができます。

一方で水理学は水の動きを観察する基本的な態度がニュートンの質点の力学とは違うために、高校の物理を学んできた人には観察者としての態度を変えてもらう必要があります。高校時代には、質点の動きに着目してその動きを追いかけていました(ラグランジュ流の記述(Lagrangian description)といいます)。ところが、川の流れを観察する際には、川岸に立ち止まって視点を固定し、通り過ぎていく水の動きに着目し、流れてくる水の粒子をつぎつぎと変えながら観察することになります(オイラー流の記述(Eulerian description)といいます)。この違いは運動方程式の表記のしかた自体を変えてしまうために、しばしば初学者が水理学を理解するのを妨げる原因になります。

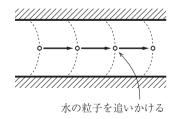

水理学では一般の古典物理学と同じように、静止している水については力の釣合い、動いている水については質量、運動量、エネルギーの三つの保存則(three conservation laws)を用いて問題を解くことになります。ただし、エネルギーの保存則については運動量の保存則を場所的に積分して得られる力学的なエネルギーの保存則であるベルヌイの定理を使います。運動量の保存則と力学的エネルギーの保存則はたがいに独立ではないために、連立することはできません。したがって、問題を解く際には、①質量の保存則と運動量の保存則を連立して解く、あるいは②質量の保存則と力学的エネルギーの保存則を連立して解くかの二者択一となります。

2 1. 水理学を用いてなにができるのか

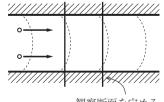
水理学は古典力学(ニュートン力学)の応用分野ですので、**古典力学パラダイム**(paradigm of classical mechanics)の指定する三つの過程を踏んで、論証を進めていきます。

- (1) 水理現象を詳細に観察して、その挙動を数式で表現しようとします。その際、時間 的あるいは場所的な変化量に着目するため、数式は流速などの物理量を時間的あるいは 場所的に微分した微分方程式になります。
- (2) 微分方程式の解を求めます。その方程式が連立する複数の偏微分方程式系で表される場合には、解を求めるのは容易ではなく、(仮定をおいて線形化したり、非線形で解けない微分方程式の解をべき級数で近似する) 摂動法などの手法を用いて解を求めることになります。その際、数学的には複数の解がある中で、物理的な考察によって解を選択していくことが必要になります。
- (3) 求めた解が現象をうまく説明しているかを水理実験によって確かめます。多くの大学では水理実験が講義科目のほかに設けられていると思います。

水理学を深く理解するには問題を解くことが欠かせません。本書では演習問題をたくさん 用意して、その詳細な解答を巻末に掲載しています。初期の段階では演習問題の数値を変え て、解答に倣って計算をしてみてください。水理学の習熟は、問題解答の習作(類似の問題 の解答を見ながら、自分で理解して問題の解を作っていく)から始まるということを覚えて おいてください。


力の釣合いと三つの保存則

流体力学を用いて水の運動を解析する際には、運動していない水では力の釣合いを用い、運動している水に対しては、質量、運動量、力学的エネルギーの三つの物理量の保存則を用います。本章では、水理学で扱うさまざまな問題に対して、これら三つの中からどれを用いればよいのか、そして三つの保存則はそれぞれどのように導かれるのかについて学習します。


(2.1) 水理学の観察方法

水の運動を扱う水理学では、まず観察断面を定めます。運動に変化が生じている場所の前後に観察断面を定めて、その間でどのような変化があるのかを考えるのが最も基本的な観察方法です。この観察方法は、オイラー流の観察方法(Eulerian method)と呼ばれています。初学者にとって水理学がほかの諸分野よりも難しく感じられるのは、この観察方法に由来しています。高校の物理で最初に学習した物体の落下運動などに見られる観察方法は、一つの質点に注目し、その運動を質点と一緒に移動しながら観察するというもので、ラグランジュ流の観察方法(Lagrangian method)と呼ばれています。二つの観察方法の名前はそれぞれ、スイスの数学者・物理学者オイラー(L. Euler、1707-1783)とフランスの数学者・物理学者ラグランジュ(J. L. Lagrange、1736-1813)にちなんでいます。

図2.1 に運動している水を二つの観察方法で観察したときの違いを示します。ラグランジュ流の観察方法(図(a))では、注目する水の粒子を定めて、その運動を観察者が追いかけていくために、観察者の位置は水の粒子の移動にともなって時々刻々と移動していくこ

(a) ラグランジュ流の観察方法

観察断面を定める

(b) オイラー流の観察方法

図2.1 ラグランジュ流とオイラー流の観察方法の違い

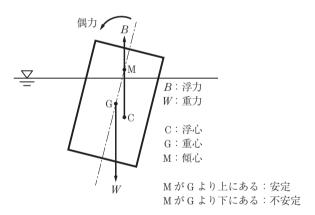
4 2. 力の釣合いと三つの保存則

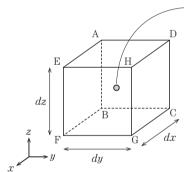
とになります。一方で、オイラー流の観察方法(図(b))では、観察する場所を定めているために、観察する水の粒子は時々刻々と変わっていくことになります。13世紀のはじめに鴨長明が著した随筆『方丈記』の冒頭には、「ゆく河の流れは絶えずして、しかももとの水にあらず。」という記述がありますが、オイラー流の観察方法ではまさにこのような視点で水の運動を観察することになります。

(2.2) カの釣合い

水理学では、動いていない水に関する問題を扱うこともあります。そのような場合に問題を解くには、力の釣合いを用います。力が釣り合っていると合力が0となり、加速度がないために運動は始まりません。考慮する力は重力、水の圧力、浮力などです。

また、静止した水の場合でも**図2.2** に見られるように、水上に浮いている物体の安定性を考えるときには浮力と重力の大きさと作用点が違うことによる回転モーメントを考慮する必要があります。図では回転モーメントは復元力として働いていますが、傾心が重心よりも下にあるとモーメントが浮体を不安定にする方向に働き、浮体は転覆してしまうことになります。




図2.2 浮体の安定を考える際のモーメントの発生

海洋土木工事においては、防波堤を作るためにケーソンと呼ばれる函型のコンクリートや、プラットホームと呼ばれる台状の構造物を用います。これらの構造物は、陸上で製作してから海上にある設置場所まで浮かせて運ぶ必要があります。このように建設の過程で構造物を運んでいるような状況は、最終的に構造物が完成してからの安定性とはまったく異なるため、技術的な仕事をする際には特に注意深く準備をする必要があります。

2.3 三つの保存則とその関係性

古典力学では、物体の運動を分析する際に、運動が変化しつつある状況の中で、不変の量すなわち保存する量に着目することにしています。一般的に、古典力学で保存する量は、質量 (mass)、運動量 (momentum)、エネルギー (energy) の三つです。これら三つの量が変化する場合であっても、その増えたり減ったりする分を評価できる場合には、これらの量の保存則を用いることができます。

水理学では、図 2.3 のように運動している水の中に観察するための微小な直方体(1 辺の長さが x,y,z 方向にそれぞれ dx,dy,dz の直方体)を置いて、三つの量の保存則(質量の保存則、運動量の保存則、エネルギーの保存則)を表す式を導きます。これらの式は、時間 t と空間座標 (x,y,z) の四つを変数に持つ、流速の x 成分 u, y 成分 v, z 成分 w と圧力 p を含む式になります。

- 中心において 流速 (*u, v, w*), 圧力 *p*

各面における物理量の求め方: 例えば、面 ABCD における流速のx成分は、面が直方体の中心からx方向に-dx/2の位置にあるので、流速のx成分uのx方向変化率 $\partial u/\partial x$ を用いて

$$u + \frac{\partial u}{\partial x} \left(-\frac{dx}{2} \right)$$

となる。同様に、面 EFGH における流速のx成分は

$$u + \frac{\partial u}{\partial x} \frac{dx}{2}$$

となる。

図2.3 観察するための微小な直方体

ただし、三つの量の保存則のうち、運動量の保存則とエネルギーの保存則は、たがいに独立ではないことに注意が必要です。水理学では、一般に、水の圧縮性を無視する(すなわち、圧力や温度によって水の密度(density)は変わらないと考える)ため、熱力学におけるエネルギーの保存則である気体の状態方程式を用いる必要がなく、力学的なエネルギーの保存則であるベルヌイの定理(Bernoulli's theorem)を用いることにしています。この名前は、スイスの数学者・物理学者ダニエル・ベルヌイ(D. Bernoulli,1700-1782)にちなんでいます。ベルヌイの定理は、運動量の保存則を表す式を場所的に積分して求めることができます。そのため、水理学では、運動量の保存則と(力学的)エネルギーの保存則を連立して用いることはできません。

したがって、水理学の問題を解く際には、つぎの二つの方法からいずれか一つの方法を選

索引

【あ】		海面上昇 カルマン定数	141 54	合流管 極浅海波	70 112
圧力水頭	11	緩勾配水路	94	コーシー・リーマンの	関係式 33
粗い管	56	慣性力	127	古典力学パラダイム	2
安定の条件	23	完全流体	28	コールブルクの式	62
[(1)]		管網	72	【さ, し】	
一次元解析でのエネルギー		【き】		サイフォン	70
方程式	59	規則波	112	シェジーの式	81
一次元解析での管路の運動	j	基本物理量	130	次元解析	129
方程式 (運動量方程式)	59	急拡損失	64	質 量	5
位置水頭	11	急勾配水路	95	――の保存則	6
移流拡散方程式	147	急縮損失	65	支配断面	98
移流項	9	急変流	77	射 流	79
[5]		共役水深	89	射流から常流へ遷移	86
171		[<]		周 期	111
渦 糸	36	111		自由水面	75
渦なし流れ	31	クウェット流	45	重 力	127
運動の相似	127	屈折係数	123	重力波	110
運動方程式	7	屈折損失	67	潤 辺	76
運動量	5	グリーンの法則	137	常流	79
――の保存則		群速度	120	常流から射流へ遷移	86
(巨視的に観察した場	合) 10	【け】		深海波	112, 117
の保存則	۸) 7		Γ0	侵食形 (海浜)	113
(微視的に観察した場	合) 7	形状損失	59	【す】	
【え】		形状損失係数 形状の相似	64 127	吸上げ効果	138
エネルギー	5	径 深	63. 76	吸上り効果	35
エネルギー線	68	傾心	22	水頭	11
エネルギーの伝達速度	120	ゲージ圧	15	水理模型実験	126
エネルギー補正係数	59	ゲート	99	スネルの法則	122
塩水くさび	143	限界勾配	94		122
_· · ·	110	限界勾配水路	94	【せ】	
【お】		限界水深	84	静水圧	14
オイラーの方程式	9	限界流	84	堰	98
オイラー流の観察方法	3	限界流速	84	堰上げ背水曲線	99
オイラー流の記述	1	限界レイノルズ数	48	絶対圧力	15
沖 波 1	12, 117	[2]		浅海波	112
【か】		ا		浅水係数	122
[13.]		洪水追跡	133	全水頭	11
開水路の流れ	75	交代水深	84	浅水変形	121
回転	29	勾 配	28	漸変流	77

			索	引	187
【そ】		粘性係数 粘性底層	39 56	【ま】	
相対水深	112	粘性流体	39	曲がり損失	67
相対波高	112	粘性力	127	摩擦速度	55
相当粗度	55			摩擦損失	59
層流	10, 43	【は】		摩擦損失係数	60
層流底層	56	背水曲線	99	マニングの式	63, 81
速度水頭	11	波形勾配	111	マノメータ	67
速度ポテンシャル	115	ハーゲン・ポアズイユ流	47	[み]	
粗度係数	63	波高	111	[7]	
【た】		波速	111	水粒子の水平速度	118
1/21		波 長	111	三つの保存則	1
対数分布則	55	バッキンガムのπ定理	130	密度	5
堆積形 (海浜)	113	発 散	29	【む, ゆ	1
高 潮	138	ハーディ・クロス法	72		
ダルシー則	144	(ひ)		ムーディー図	61
ダルシー・ワイスバッ			67	有限振幅波	113
段落ち	100	ピエゾ水頭	67	[6]	
段 波	90	比エネルギー	83		索士壮 2
断面二次モーメント	17	非回転流れ	31	ラグランジュ流の観	
【ち】		微小振幅波	113	ラグランジュ流の記	
跳 水	86. 87	微小振幅波理論 ひずみ模型	113 128	ラディエーション応 ラプラスの作用素	力 124 29
- 長 波	80, 87 112, 134	非静水圧	128	ラプラスの作用素 ラプラスの方程式	29, 32, 114
調和関数	32		77. 104	リノノスの万柱式 乱 流	10, 48
m/11 天 女X	32		77, 104		10, 40
		北北州	28		
【つ,て】		非粘性	28	[9]	
	134	非粘性 【ふ】	28		127
津波	134 100		28 112	【り】 力学的な相似 リチャードソン数	127 143
		[&]		 力学的な相似	
津波低下背水曲線	100	【ふ】 不規則波	112	カ学的な相似 リチャードソン数	143
津 波 低下背水曲線 定常流	100 77	【ふ】 不規則波 吹寄せ効果	112 139	力学的な相似 リチャードソン数 流出損失	143 66
津 波 低下背水曲線 定常流	100 77 113	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論	112 139 110	力学的な相似 リチャードソン数 流出損失 流跡線	143 66 30
津 波 低下背水曲線 定常流 汀 線 堤防の高さ 定 流	100 77 113 132	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論 浮 心	112 139 110 34 54 21	力学的な相似 リチャードソン数 流出損失 流跡線 流 線	143 66 30 30
津 波 低下背水曲線 定常流 汀 線 堤防の高さ	100 77 113 132 77	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論 浮 心 浮体の安定	112 139 110 34 54 21 22	力学的な相似 リチャードソン数 流出損失 流跡線 流 線 流入損失 流 量	143 66 30 30 66 7
津 波 低下背水曲線 定常流 汀 線 堤防の高さ 定 流 【と】 透水係数	100 77 113 132 77	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論 浮 心 浮体の安定 不定流	112 139 110 34 54 21 22 77, 104	力学的な相似 リチャードソン数 流出損失 流跡線 流 線 流入損失 流 量	143 66 30 30 66 7
津 波 低下背水曲線 定常流 汀 線 堤防の高さ 定 流 【と】 透水係数 動水勾配線	100 77 113 132 77 145 67	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論 浮 心 浮体の安定 不定流 不等流	112 139 110 34 54 21 22 77, 104	力学的な相似 リチャードソン数 流出損失 流跡線 流 線 流入損失 流 量 【れ, わ	143 66 30 30 66 7
津 波 低下背水曲線 定常流 汀 線 堤防の高さ 定 流 【と】 透水係数 動水勾配線 透水層	100 77 113 132 77 145 67 144	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論 浮 心 浮体の安定 不定流 不等流 不等流	112 139 110 34 54 21 22 77, 104 77 101	力学的な相似 リチャードソン数 流出損失 流跡線 流 線 流入損失 流 量 【れ, わ レイノルズ応力 レイノルズ数	143 66 30 30 66 7 52 47
津 波 低下背水曲線 定常流 汀 線 堤防の高さ 定 流 【と】 透水係数 動水勾配線 透水層 動粘性係数	100 77 113 132 77 145 67 144 10, 41	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論 浮 心 浮体の安定 不定流 不等流 不等流 不等流 不等流 不等流の基礎方程式	112 139 110 34 54 21 22 77, 104 77 101 92	力学的な相似 リチャードソン数 流出損失 流跡線 流 線 流入損失 流 量 【れ, わ レイノルズ応力 レイノルズ相似則	143 66 30 30 66 7 52 47 129
津 波 低下背水曲線 定常流 沢 線 高さ 定 流 を 水係数 動水気配 透水係数 動水内配 動粘性係 動粘性係数 等 流	100 77 113 132 77 145 67 144 10, 41 77, 79	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論 浮 心 浮体の安定 不定流 不等流 不等流 不等流 でいます。 では、	112 139 110 34 54 21 22 77, 104 77 101 92	力学的な相似 リチャードソン数 流出損失 流跡線 流、損失 流 量 【れ, れ レイノルズ応力 レイノルズ 類 レイノルズ 相似則 レイノルズの方程式	143 66 30 30 66 7 51 52 47 129 10, 51
津 波 低下背流 完常 線 に 定 消 線 の 流 で を を を を を を が 流 、 係 の 、 流 、 係 の 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	100 77 113 132 77 145 67 144 10, 41 77, 79 81	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論 浮 心 浮体の安定 不定流 不等流 不等流 不等流 不等流 不等流の基礎方程式 プラントルの混合距離理語 浮 力	112 139 110 34 54 21 22 77, 104 77 101 92 \$\hfrac{1}{2}\$	力学的な相似 リチャードソン数 流出損失 流跡線 流 線 流入損失 流 量 【れ, れ レイノルズ応力 レイノルズ 数 レイノルズ 相似則 レイノルズの方程式 連続式	143 66 30 30 66 7 51 52 47 129 10, 51 6
津 下背水曲線 定常 線 定常 線 で 流 線 の 流 と 】 透水係勾層 係 数 動 数 終 の 透水 終 数 線 の 透水 終 の 液 水 く の を 形 れ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	100 77 113 132 77 145 67 144 10, 41 77, 79	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論 浮 心 浮体の安定 不定流 不等流 不等流 不等流 不等流 でき流 の基礎方程式 プラントルの混合距離理論 アラントルの混合距離理論 アラントルの表	112 139 110 34 54 21 22 77, 104 77 101 92 \$\hat{19}\$	力学的な相似 リチャードソン数 流出損失 流跡線 流入損失 流 量 【れ, れ レイノルズ応力 レイノルズ 類 レイノルズ 相似則 レイノルズ の方程式 連続出し	143 66 30 30 66 7 51 52 47 129 10, 51 6 35
津 波 低下背流 完常 線 に 定 消 線 の 流 で を を を を を を が 流 、 係 の 、 流 、 係 の 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	100 77 113 132 77 145 67 144 10, 41 77, 79 81	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論 浮体の安定 不定流 不等流 不等流 不等流 不等流 アラントルの混合距離理言 アラントルの混合距離理言 アリルード数 フルード数 フルード相似則	112 139 110 34 54 21 22 77, 104 77 101 92 \$\hat{19}\tag{77}\tag{127}	力学的な相似 リチャードソン数 流出損失 流跡線 流 線 流入損失 流 量 【れ, れ レイノルズ応力 レイノルズ 数 レイノルズ 相似則 レイノルズの方程式 連続式	143 66 30 30 66 7 51 52 47 129 10, 51 6 35
津 下 波 水 曲線 定常流 線 高 さ に 常 線 高 さ で で 派 線 高 さ で で 水 係 勾 層	100 77 113 132 77 145 67 144 10, 41 77, 79 81 106	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論 浮体の安定 不定流 不等流計算 不等流の基礎方程式 プラントルの混合距離理論 アラントルの混合距離理論 アラントルの視合距離理論 アリルード数 フルード相似則 分岐管	112 139 110 34 54 21 22 77, 104 77 101 92 \$\hat{19}\$ 77 127	力学的な相似 リチャードソン数 流出損失 流跡線 流入損失 流 量 【れ, れ レイノルズ応力 レイノルズ類 レイノルズ相似則 レイノルズの方程式 連続式 湧出し 【 英字 】	143 66 30 30 66 7 52 47 129 10,51 6 35
津 下 液 水 曲線 定常流 線 の流 と で で 線 の 流	100 77 113 132 77 145 67 144 10, 41 77, 79 81 106	【ふ】 不規則波 吹寄せ効果 復元力 複複ポテンシャル ブラネル での安定 不定等流 不等流 不等流 不等流 不等等流の基礎方程式 デールルの混合距離理 デールルード カフルル 対し	112 139 110 34 54 21 22 77, 104 77 101 92 \$\hat{19}\tag{77}\tag{127}	力学的な相似 リチャードソン数 流出損失 流跡線 流入損失 流 量 【れ, れ レイノルズ応力 レイノルズ類 レイノルズ相似則 レイノルズの方程式 連続式 湧出し 【英字】 M1 曲線	143 66 30 30 66 7 52 47 129 10.51 6 35
津 下 波 水 曲線 定常流 線 高 さ に 常 線 高 さ で で 派 線 高 さ で で 水 係 勾 層	100 77 113 132 77 145 67 144 10, 41 77, 79 81 106	【ふ】 不規則波 吹寄せ効果 復元力 複素速度ポテンシャル ブシネスクの渦粘性理論 浮体の安定 不定流 不等流計算 不等流の基礎方程式 プラントルの混合距離理論 アラントルの混合距離理論 アラントルの視合距離理論 アリルード数 フルード相似則 分岐管	112 139 110 34 54 21 22 77, 104 77 101 92 \$\hat{19}\$ 77 127	カ学的な相似 リチャードソン数 流出損失 流跡線 流入損失 流 量 【れ, れ レイノルズ応力 レイノルズ類 レイノルズ相似則 レイノルズの方程式 連続式 湧出し 【英字】 M1 曲線 M2 曲線	143 66 30 30 66 7 129 10,51 6 35
津 下 液 水 曲線 定常流 線 の流 と で で 線 の 流	100 77 113 132 77 145 67 144 10, 41 77, 79 81 106	【ふ】 不規則波 吹寄せ効果 復元力 複複ポテンシャル ブラネル での安定 不定等流 不等流 不等流 不等流 不等等流の基礎方程式 デールルの混合距離理 デールルード カフルル 対し	112 139 110 34 54 21 22 77, 104 77 101 92 \$\hat{19}\$ 77 127	力学的な相似 リチャードソン数 流出損失 流跡線 流入損失 流 量 【れ, れ レイノルズ応力 レイノルズ類 レイノルズ相似則 レイノルズの方程式 連続式 湧出し 【英字】 M1 曲線	143 66 30 30 66 7 52 47 129 10.51 6 35
津 波 低下背流 線 定常 線 で で で で で で で で で で で で で で で で で で	100 77 113 132 77 145 67 144 10, 41 77, 79 81 106 32 方程式 10, 43 43	【ふ】 不規則波 吹寄せ効果 復元力 複素シネンシャル ブシネスの海科性理論 浮体の安定 不定流 不等流計算 不等流の基礎方程式 で等流 の事と がある。 では、 ののでは、	112 139 110 34 54 21 22 77, 104 77 101 92 \$\hat{a}\$ 54 19 77 127 70 116	カ学的な相似 リチャードソン数 流出損失 流跡線 流入損失 流 量 【れ, れ レイノルズ応力 レイノルズ 類似則 レイノルズの方程式 連続式 湧出し 【英字】 M1 曲線 M2 曲線 M3 曲線 S1 曲線	143 66 30 30 66 7 52 47 129 10.51 6 35
津 波 低 定常流 線 定常流 線 高 き 定	100 77 113 132 77 145 67 144 10, 41 77, 79 81 106	【ふ】 不規則波 吹寄せ効果 復元力 複素シネル ブシシャル ブシネスの 浮体の 深体の 定不定流 不等流計算 不等流の基礎方程式 で等流 の事と がある。 の事を でが、 の事を できる	112 139 110 34 54 21 22 77, 104 77 101 92 \$\hat{19}\$ 77 127 70 116	カ学的な相似 リチャードソン数 流出損失 流跡線 流入損失 流 量 【れ, れ レイノルズ応力 レイノルズ 類 レイノルズ 相似則 レイノルズの方程式 連続式 湧出し 【英字】 M1 曲線 M2 曲線 M3 曲線	143 66 30 30 66 7 129 10,51 6 35
津低定常線 定常流線 高さ 定が、 は を で で で で で で の が 流 の が 、 係 数 の が 、 係 数 の が 、 係 数 の が 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の	100 77 113 132 77 145 67 144 10, 41 77, 79 81 106 32 方程式 10, 43 43 120	【ふ】 不規則波 吹寄力 複索サランシャル で第一力 複素ネスクの渦 浮体の安定 不定流 不等流流 不等流流 不等流流 不等流流 かり カード が関係式 「へ」 でクトルル解析 でルヌイの で理	112 139 110 34 54 21 22 77, 104 77 101 92 \$\hat{19}\$ 77 127 70 116	力学的な相似 リチャードソン数 流出損失 流、線 流入量 【れ、れ レイノルズを レイノルズを レイノルズの方程式 連続し 【英字】 M1 曲線 M2 曲線 M3 曲線 S1 曲線 S2 曲線	143 66 30 30 66 7 129 10,51 6 35 96 96 96 96
津低下流線に常常線の流 では、 では、 では、 では、 では、 では、 では、 では、	100 77 113 132 77 145 67 144 10, 41 77, 79 81 106 32 方程式 10, 43 43 120 122	【ふ】 不規則波 吹寄せ効果 復末テンシャル プラス 複素ネネル度ポテンシャル ア学体の 深体の で定 不等流 不等流 不等流 があり カード カフルード 関係式 「へ」 ベクトル解析	112 139 110 34 54 21 22 77, 104 77 101 92 \$\hat{19}\$ 77 127 70 116	力学的な相似 リチャードソン数 流出損失 流、線 流入量 【れ、れ レイノルズを レイノルズを レイノルズの方程式 連続し 【英字】 M1 曲線 M2 曲線 M3 曲線 S1 曲線 S2 曲線	143 66 30 30 66 7 129 10,51 6 35 96 96 96 96

39 ポテンシャル流れ

31

ニュートンの仮説

—— 編著者略歴 ——

柴山 知也(しばやま ともや)

1977年 東京大学工学部土木工学科卒業

1979年 東京大学大学院工学系研究科修士課程修了(土木工学専攻)

1981年 東京大学助手

1985年 工学博士(東京大学)

1985年 東京大学講師

1986年 東京大学助教授

1987年 横浜国立大学助教授

1997年 横浜国立大学教授

2009年 横浜国立大学名誉教授

2009年 早稲田大学教授

現在に至る

──著者略歴──

髙木 泰士(たかぎ ひろし)

1997年 横浜国立大学工学部建設学科土木工学コース卒 業

1999 年 横浜国立大学大学院工学研究科博士課程前期修 了 (人工環境システム学専攻)

1999年 五洋建設株式会社

2005年 横浜国立大学助手

2008年 博士(工学)(横浜国立大学)

2008年 五洋建設株式会社

2010年 独立行政法人国際協力機構

2011年 東京工業大学准教授

現在に至る

三上 貴仁(みかみ たかひと)

2010年 早稲田大学理工学部社会環境工学科卒業

2011年 早稲田大学大学院創造理工学研究科修士課程修 了(建設工学専攻)

2014年 早稲田大学大学院創造理工学研究科博士後期課程修了(建設工学専攻),博士(工学)

2014年 早稲田大学講師

2017年 東京都市大学准教授

現在に至る

中村 亮太(なかむら りょうた)

2013年 早稲田大学創造理工学部社会環境工学科卒業

2014年 早稲田大学大学院創造理工学研究科修士課程修 了(建設工学真政)

2017年 早稲田大学大学院創造理工学研究科博士後期課 程修了(建設工学専攻),博士(工学)

2017年 豊橋技術科学大学助教

2019年 新潟大学助教 現在に至る

鈴木 崇之(すずき たかゆき)

1998年 横浜国立大学工学部建設学科土木工学コース卒 業

2000 年 横浜国立大学大学院工学研究科博士課程前期修 了(人工環境システム学専攻)

2000 年 日本建設コンサルタント株式会社 (現 いであ 株式会社)

2004月 横浜国立大学大学院工学府博士課程後期修了 (社会空間システム学専攻),博士(工学)

2004年 オレゴン州立大学客員研究員

2004年 横浜国立大学大学院工学研究院非常勤教員(助 手相当職)

2005 年 独立行政法人(現 国立研究開発法人)港湾空港技術研究所海洋·水工部任期付研究官

2009年 京都大学防災研究所助教

2010年 横浜国立大学准教授 現在に至る

髙畠 知行(たかばたけ ともゆき)

2010年 早稲田大学理工学部社会環境工学科卒業

2012年 早稲田大学大学院創造理工学研究科修士課程修 了 (建設工学専攻)

2012年 大成建設株式会社技術センター

2017 年 早稲田大学大学院創造理工学研究科博士後期課程修了(建設工学専攻),博士(工学)

2018年 早稲田大学理工学術院総合研究所次席研究員 (研究院講師) 現在に至る

松丸 亮 (まつまる りょう)

1986年 横浜国立大学工学部土木工学科卒業

1986年 日本海洋掘削株式会社

1987 年 株式会社パシフィックコンサルタンツインター ナショナル

1998年 横浜国立大学大学院工学研究科博士課程前期修 了(計画建設学専攻)

2005年 有限会社アイ・アール・エム代表取締役社長

2010年 横浜国立大学大学院工学府博士課程後期修了 (社会空間システム学専攻),博士(工学)

2013年 東洋大学教授 現在に至る

水理学解説

Hydraulics

©Tomoya Shibayama, Hiroshi Takagi, Takayuki Suzuki, Takahito Mikami, Tomoyuki Takabatake, Ryota Nakamura, Ryo Matsumaru 2019

2019年9月26日 初版第1刷発行

検印省略

編著	者	柴	Щ	知	也
著	者	髙	木	泰	士
		鈴	木	崇	之
		三	上	貴	仁
		髙	畠	知	行
		中	村	亮	太
		松	丸		亮
発 行	者	株式会	社ニ	ロロナ	社
		代表	者 4	来真	也
印刷	所	新日ス	下印刷	株式会	社
製本	所	有限会	社 愛	 手製本	所
112-0	011	東京都ス		石 4-46-	-10
発 行	所	株式会社	± ⊐	ロナ	社
COI	RONA	PUBLIS	SHING (CO., LTI).
		Tokyo	Japan		
替0014	40-8-14	1844・電	武話(03)	3941-313	31(代

ISBN 978-4-339-05268-8 C3051 Printed in Japan

(新井)

JCOPY <出版者著作権管理機構 委託出版物> 本書の無断複製は著作権法上での例外を除き禁じられています。複製される場合は、そのつど事前に、 出版者著作権管理機構 (電話 03-5244-5088, FAX 03-5244-5089, e-mail: info@jcopy.or.jp) の許諾を

http://www.coronasha.co.jp

本書のコピー、スキャン、デジタル化等の無断複製・転載は著作権法上での例外を除き禁じられています。 購入者以外の第三者による本書の電子データ化及び電子書籍化は、いかなる場合も認めていません。 落丁・乱丁はお取替えいたします。