ディジタル通信・放送の 変復調技術

工学博士 生岩 量久 著

まえがき

通信・放送分野においては、アナログ伝送からディジタル伝送への移行が急速に進んでいる。携帯電話、コードレスなど通信分野のディジタル化の流れから放送分野でのディジタル化は当然予想されていたが、伝送に関してはこれまでディジタル化があまり進まず、アナログ方式が主流となっていた。

これは、放送の場合、情報量が多い画像を高品質でディジタル伝送するためには広い帯域が要求されることと複雑な構成の受信機が必要となることが原因である。しかしながら、近年の帯域圧縮技術と LSI (large scale integration、大規模集積回路) 技術の進展により、現在使用しているアナログ伝送帯域幅をそのまま利用してもディジタル伝送が可能となるとともに、受信機も低コスト化できるようになった。さらに、ディジタル変復調技術と LSI 技術の進展に伴い、地上放送における最大の課題であるマルチパスフェージングに強いOFDM (orthogonal frequency division multiplexing、直交周波数分割多重)変調技術の実用化が可能となったことも大きい。

OFDM を用いた地上ディジタルテレビ放送は,2003年から関東,近畿,中京地区で開始され,しだいにそのサービスエリアを広げつつあるが,このディジタル放送においては,最新のディジタル変復調技術が多く取り入れられている。

本書では、ディジタル通信・放送システムの根幹をなすディジタル変復調技術について複雑な数式はなるべく使用せず、電子情報通信系学部生・初心者でもその本質を十分理解できるようわかりやすく解説している。また、基本的な通信方式であるシングルキャリヤ変調方式とマルチキャリヤのOFDMを同時に取り扱っている点も大きな特徴といえる。

ページ配分としては、まずベースバンドにおけるディジタル伝送を説明した

後、シングルキャリヤを用いた基本的な変調方式を述べる。つぎに、複雑な多 重方式である OFDM についてふれた後、その応用として OFDM を用いた地 上ディジタルテレビ放送について変復調・伝送面を中心に説明する。最後に地 上ディジタルテレビ放送における技術的な課題とそれを解決するための新技術 について OFDM に関連する事項を中心に紹介する。

なお、本書の執筆にあたっては、NHK 放送技術研究所の斉藤知弘氏、高 田政幸氏、土田健一氏、(株) 東芝の三木信之氏、アンリツ(株)の後藤剛 秀氏、松下電器産業(株)の影山定司氏、広島市立大学情報科学部の神尾武 司氏、安 昌俊氏、藤坂尚登氏をはじめ、多くの方々からご協力をいただい た。この場を借りて厚く御礼申し上げる。終わりにコロナ社の方々のご尽力に 謝意を表する次第である。

2008年2月

著 者

目 次

1 ● ディジタル伝送の基礎

1.1 / イングル伝送の基本構成	2
1.2 ベースバンドディジタル信号の種類	3
1.3 ベースバンド伝送における符号間干渉と誤り率	4
1.4 伝送路の雑音特性と誤り率	6
1.4.1 雜 音 特 性	
1.4.2 雑音による誤りの発生	
1.5 無ひずみ伝送条件	8
1.6 シンボルレートおよびビットレートと帯域幅の関係	. 11
演 習 問 題	. 11
2.1 ディジタル変調方式 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 12
2.1.1 ASK 変調方式	
2.1.2 PSK 変調方式	-
2.1.3 信号間距離を同じにするための信号電力比較	
2.1.4 変調波伝送に必要な帯域幅	. 31
2.1.5 PSK 信号を帯域制限したときに生じる非線形ひずみ	. 32
2.2 ディジタル復調方式	33
2.2.1 同期検波方式	. 33
2.2.2 差動符号化と差動検波	
2.2.2 定期付与16と定期快收	. 37

目

2.3 PSK および QAM 変調方式の誤り率特性 ······	
2.3.1 誤り率の係数 ki の算出	41
2.3.2 誤り率の係数 k2 および誤り率の算出	42
2.4 CNR と SNR および <i>E_b/N₀</i> との関係	
2.4.1 CNR & SNR	44
$2.4.2$ CNR と E_b/N_0 および周波数利用効率の関係	
2.4.3 CNR とE _b /N₀の使い分け	46
2.5 その他の変調方式	
2.5.1 VSB 方 式 ··································	47
2.5.2 OQPSK	
2.5.3 π/4 シフト QPSK ····································	
2.5.4 FSK・MSK 系変調方式	53
2.6 周波数利用効率と振幅変化の面から見た各変調方式の評価	57
2.7 誤り訂正符号	
2.7.1 ブロック符号	59
2.7.2 畳込み符号	60
2.8 符号化変調方式	
演 習 問 題	64
3. OFDM 変復調方式	
• OFDM 変復調方式	
3.1 OFDM 変調の歴史と特徴	65
3.2 OFDM 信号波形 ······	67
3.3 OFDM の直交性	69
3.4 OFDM 変復調器の基本構成 ······	70
3.5 OFDM 信号の式表示と伝送	
3.5.1 基 本 式	
3.5.2 複素 OFDM 信号の伝送と復調 ····································	76
3.5.3 周波数変換の具体例	
3.5.4 OFDM と差動検波 ·····	79

目

3.6 マルチパス干渉による信号劣化とガードインターバル 79
3.6.1 マルチパスによる信号劣化 79
3.6.2 ガードインターバルの付加 81
3.7 マルチパス干渉および周波数ずれによる信号劣化と波形等化 84
3.7.1 波形等化の必要性 84
3.7.2 マルチパスによる信号劣化と等化 85
3.7.3 周波数ずれによる信号劣化と等化 89
3.8 符号化とインタリーブ 93
3.8.1 時間インタリーブ 93
3.8.2 周波数インタリーブ 94
3.9 OFDM 波の同期技術 95
3.9.1 シンボル同期 96
3.9.2 キャリヤ周波数同期 97
3.10 OFDM 波増幅時の課題 97
3.10.1 非直線ひずみが OFDM 波に与える影響 ······ 97
3.10.2 直線性がよい電力増幅器が必要な理由 100
演 習 問 題
OFDM を用いた地上ディジタルテレビ放送の
OFDM を用いた地上ディジタルテレビ放送の変復調技術
4.1 地上ディジタル放送システムの概要 103
4.1.1 地上ディジタル放送のキーテクノロジー 103
4.1.2 日本, ヨーロッパおよびアメリカの放送方式比較 107
4.1.3 日本の地上ディジタルテレビ放送方式の特長 109
4.1.4 アナログ放送とディジタル放送の比較 109
4.1.5 伝送パラメータ 112
4.1.6 実際の運用モード・・・・・・・ 115
4.2 地上ディジタル放送の変復調技術 117
4.2.1 送受信システムの系統
4.2.2 携帯受信端末の系統

目

4.2.4 SFN 128 4.2.5 OFDM 波の復調技術 128 4.3 地上ディジタル放送の伝送特性 134 4.3.1 復調器における所要 CNR 134 4.3.2 キャリヤ周波数の許容偏差 135 4.3.3 OFDM キャリヤ周波数の測定 136 4.3.4 OFDM 波の伝送と干渉・混信妨害 137 4.3.5 所要電界強度を求めるための回線設計 140 演 習 問 題 144 ・ 地上ディジタル放送における OFDM 波の伝送 ・ および受信と監視のための新技術 5.1 SFN ネットワーク実現のための技術 145 5.1.1 回り込み波キャンセラ 145 5.1.2 光変調器を用いた送受分離中継局用信号伝送システム 146 5.1.3 SFN 環境下における長距離遅延プロファイル測定装置 152 5.2 OFDM 波の増幅技術 157 5.2.1 ディジタルプリディストーション方式 MCPA 157 5.2.2 GaN・HEMT を用いた PA 161 5.2.3 番組伝送用マイクロ波帯高効率電力増幅器 162 5.3 OFDM 波の監視技術 164 5.3.1 MER を用いた監視技術 164 5.3.2 放送中に BER 測定が可能な監視装置 170 5.4 OFDM 波を多段伝送したときの課題と対策 177 5.5 OFDM 波の海上移動受信 179	
4.3 地上ディジタル放送の伝送特性 134 4.3.1 復調器における所要 CNR 134 4.3.2 キャリヤ周波数の許容偏差 135 4.3.3 OFDM キャリヤ周波数の測定 136 4.3.4 OFDM 波の伝送と干渉・混信妨害 137 4.3.5 所要電界強度を求めるための回線設計 140 演 習 問 題 144 *** 地上ディジタル放送における OFDM 波の伝送 および受信と監視のための新技術 5.1 SFNネットワーク実現のための技術 145 5.1.1 回り込み波キャンセラ 145 5.1.2 光変調器を用いた送受分離中継局用信号伝送システム 146 5.1.3 SFN 環境下における長距離遅延プロファイル測定装置 152 5.2 OFDM 波の増幅技術 157 5.2.1 ディジタルプリディストーション方式 MCPA 157 5.2.2 GaN・HEMT を用いた PA 161 5.2.3 番組伝送用マイクロ波帯高効率電力増幅器 162 5.3 OFDM 波の監視技術 164 5.3.1 MER を用いた監視技術 164 5.3.2 放送中に BER 測定が可能な監視装置 170 5.4 OFDM 波を多段伝送したときの課題と対策 177 5.5 OFDM 波の海上移動受信 179	
4.3.1 復調器における所要 CNR 134 4.3.2 キャリヤ周波数の許容偏差 135 4.3.3 OFDM キャリヤ周波数の測定 136 4.3.4 OFDM 波の伝送と干渉・混信妨害 137 4.3.5 所要電界強度を求めるための回線設計 140 演 習 問 題 144 *** 地上ディジタル放送における OFDM 波の伝送 および受信と監視のための新技術 5.1 SFN ネットワーク実現のための技術 145 5.1.1 回り込み波キャンセラ 145 5.1.2 光変調器を用いた送受分離中継局用信号伝送システム 146 5.1.3 SFN 環境下における長距離遅延プロファイル測定装置 152 5.2 OFDM 波の増幅技術 157 5.2.1 ディジタルプリディストーション方式 MCPA 157 5.2.2 GaN・HEMT を用いた PA 161 5.2.3 番組伝送用マイクロ波帯高効率電力増幅器 162 5.3 OFDM 波の監視技術 164 5.3.1 MER を用いた監視技術 164 5.3.2 放送中に BER 測定が可能な監視装置 170 5.4 OFDM 波を多段伝送したときの課題と対策 177 5.5 OFDM 波の海上移動受信 179	
4.3.2 キャリヤ周波数の許容偏差 135 4.3.3 OFDM キャリヤ周波数の測定 136 4.3.4 OFDM 波の伝送と干渉・混信妨害 137 4.3.5 所要電界強度を求めるための回線設計 140 演 習 問 題 144 助上ディジタル放送における OFDM 波の伝送 および受信と監視のための新技術 145 5.1 SFN ネットワーク実現のための技術 145 5.1.1 回り込み波キャンセラ 145 5.1.2 光変調器を用いた送受分離中継局用信号伝送システム 146 5.1.3 SFN 環境下における長距離遅延プロファイル測定装置 152 5.2 OFDM 波の増幅技術 157 5.2.1 ディジタルプリディストーション方式 MCPA 157 5.2.2 GaN-HEMT を用いた PA 161 5.2.3 番組伝送用マイクロ波帯高効率電力増幅器 162 5.3 OFDM 波の監視技術 164 5.3.1 MER を用いた監視技術 164 5.3.2 放送中に BER 測定が可能な監視装置 170 5.4 OFDM 波を多段伝送したときの課題と対策 177	
4.3.3 OFDM キャリヤ周波数の測定 136 4.3.4 OFDM 波の伝送と干渉・混信妨害 137 4.3.5 所要電界強度を求めるための回線設計 140 演 習 問 題 144 *** 地上ディジタル放送における OFDM 波の伝送 *** および受信と監視のための新技術 5.1 SFN ネットワーク実現のための技術 145 5.1.1 回り込み波キャンセラ 145 5.1.2 光変調器を用いた送受分離中継局用信号伝送システム 146 5.1.3 SFN 環境下における長距離遅延プロファイル測定装置 152 5.2 OFDM 波の増幅技術 157 5.2.1 ディジタルプリディストーション方式 MCPA 157 5.2.2 GaN・HEMT を用いた PA 161 5.2.3 番組伝送用マイクロ波帯高効率電力増幅器 162 5.3 OFDM 波の監視技術 164 5.3.1 MER を用いた監視技術 164 5.3.2 放送中に BER 測定が可能な監視装置 170 5.4 OFDM 波を多段伝送したときの課題と対策 177	
4.3.4 OFDM 波の伝送と干渉・混信妨害1374.3.5 所要電界強度を求めるための回線設計140演習問題144地上ディジタル放送における OFDM 波の伝送 および受信と監視のための新技術5.1 SFNネットワーク実現のための技術1455.1.1 回り込み波キャンセラ1455.1.2 光変調器を用いた送受分離中継局用信号伝送システム1465.1.3 SFN 環境下における長距離遅延プロファイル測定装置1525.2 OFDM 波の増幅技術1575.2.1 ディジタルプリディストーション方式 MCPA1575.2.2 GaN-HEMT を用いた PA1615.2.3 番組伝送用マイクロ波帯高効率電力増幅器1625.3 OFDM 波の監視技術1645.3.1 MER を用いた監視技術1645.3.2 放送中に BER 測定が可能な監視装置1705.4 OFDM 波を多段伝送したときの課題と対策1775.5 OFDM 波の海上移動受信179	
4.3.5 所要電界強度を求めるための回線設計140演習問題地上ディジタル放送における OFDM 波の伝送 および受信と監視のための新技術5.1 SFNネットワーク実現のための技術1455.1.1 回り込み波キャンセラ1455.1.2 光変調器を用いた送受分離中継局用信号伝送システム1465.1.3 SFN 環境下における長距離遅延プロファイル測定装置1525.2 OFDM 波の増幅技術1575.2.1 ディジタルプリディストーション方式 MCPA1575.2.2 GaN-HEMT を用いた PA1615.2.3 番組伝送用マイクロ波帯高効率電力増幅器1625.3 OFDM 波の監視技術1645.3.1 MER を用いた監視技術1645.3.2 放送中に BER 測定が可能な監視装置1705.4 OFDM 波を多段伝送したときの課題と対策1775.5 OFDM 波の海上移動受信179	
世上ディジタル放送における OFDM 波の伝送 および受信と監視のための新技術 5.1 SFN ネットワーク実現のための技術 145 5.1.1 回り込み波キャンセラ 145 5.1.2 光変調器を用いた送受分離中継局用信号伝送システム 146 5.1.3 SFN 環境下における長距離遅延プロファイル測定装置 152 5.2 OFDM 波の増幅技術 157 5.2.1 ディジタルプリディストーション方式 MCPA 157 5.2.2 GaN-HEMT を用いた PA 161 5.2.3 番組伝送用マイクロ波帯高効率電力増幅器 162 5.3 OFDM 波の監視技術 164 5.3.1 MER を用いた監視技術 164 5.3.2 放送中に BER 測定が可能な監視装置 170 5.4 OFDM 波を多段伝送したときの課題と対策 177	
地上ディジタル放送における OFDM 波の伝送 および受信と監視のための新技術 5.1 SFN ネットワーク実現のための技術 145 5.1.1 回り込み波キャンセラ 145 5.1.2 光変調器を用いた送受分離中継局用信号伝送システム 146 5.1.3 SFN 環境下における長距離遅延プロファイル測定装置 152 5.2 OFDM 波の増幅技術 157 5.2.1 ディジタルプリディストーション方式 MCPA 157 5.2.2 GaN-HEMT を用いた PA 161 5.2.3 番組伝送用マイクロ波帯高効率電力増幅器 162 5.3 OFDM 波の監視技術 164 5.3.1 MER を用いた監視技術 164 5.3.2 放送中に BER 測定が可能な監視装置 170 5.4 OFDM 波の海上移動受信 179	
および受信と監視のための新技術 5.1 SFN ネットワーク実現のための技術 145 5.1.1 回り込み波キャンセラ 145 5.1.2 光変調器を用いた送受分離中継局用信号伝送システム 146 5.1.3 SFN 環境下における長距離遅延プロファイル測定装置 152 5.2 OFDM 波の増幅技術 157 5.2.1 ディジタルプリディストーション方式 MCPA 157 5.2.2 GaN-HEMT を用いた PA 161 5.2.3 番組伝送用マイクロ波帯高効率電力増幅器 162 5.3 OFDM 波の監視技術 164 5.3.1 MER を用いた監視技術 164 5.3.2 放送中に BER 測定が可能な監視装置 170 5.4 OFDM 波を多段伝送したときの課題と対策 177 5.5 OFDM 波の海上移動受信 179	
5.1 SFN ネットワーク実現のための技術1455.1.1 回り込み波キャンセラ1455.1.2 光変調器を用いた送受分離中継局用信号伝送システム1465.1.3 SFN 環境下における長距離遅延プロファイル測定装置1525.2 OFDM 波の増幅技術1575.2.1 ディジタルプリディストーション方式 MCPA1575.2.2 GaN-HEMT を用いた PA1615.2.3 番組伝送用マイクロ波帯高効率電力増幅器1625.3 OFDM 波の監視技術1645.3.1 MER を用いた監視技術1645.3.2 放送中に BER 測定が可能な監視装置1705.4 OFDM 波を多段伝送したときの課題と対策1775.5 OFDM 波の海上移動受信179	
5.1.1 回り込み波キャンセラ1455.1.2 光変調器を用いた送受分離中継局用信号伝送システム1465.1.3 SFN 環境下における長距離遅延プロファイル測定装置1525.2 OFDM 波の増幅技術1575.2.1 ディジタルプリディストーション方式 MCPA1575.2.2 GaN-HEMT を用いた PA1615.2.3 番組伝送用マイクロ波帯高効率電力増幅器1625.3 OFDM 波の監視技術1645.3.1 MER を用いた監視技術1645.3.2 放送中に BER 測定が可能な監視装置1705.4 OFDM 波を多段伝送したときの課題と対策1775.5 OFDM 波の海上移動受信179	
5.1.1 回り込み波キャンセラ1455.1.2 光変調器を用いた送受分離中継局用信号伝送システム1465.1.3 SFN 環境下における長距離遅延プロファイル測定装置1525.2 OFDM 波の増幅技術1575.2.1 ディジタルプリディストーション方式 MCPA1575.2.2 GaN-HEMT を用いた PA1615.2.3 番組伝送用マイクロ波帯高効率電力増幅器1625.3 OFDM 波の監視技術1645.3.1 MER を用いた監視技術1645.3.2 放送中に BER 測定が可能な監視装置1705.4 OFDM 波を多段伝送したときの課題と対策1775.5 OFDM 波の海上移動受信179	
5.1.2 光変調器を用いた送受分離中継局用信号伝送システム1465.1.3 SFN 環境下における長距離遅延プロファイル測定装置1525.2 OFDM 波の増幅技術1575.2.1 ディジタルプリディストーション方式 MCPA1575.2.2 GaN-HEMT を用いた PA1615.2.3 番組伝送用マイクロ波帯高効率電力増幅器1625.3 OFDM 波の監視技術1645.3.1 MER を用いた監視技術1645.3.2 放送中に BER 測定が可能な監視装置1705.4 OFDM 波を多段伝送したときの課題と対策1775.5 OFDM 波の海上移動受信179	
5.1.3 SFN 環境下における長距離遅延プロファイル測定装置1525.2 OFDM 波の増幅技術1575.2.1 ディジタルプリディストーション方式 MCPA1575.2.2 GaN-HEMT を用いた PA1615.2.3 番組伝送用マイクロ波帯高効率電力増幅器1625.3 OFDM 波の監視技術1645.3.1 MER を用いた監視技術1645.3.2 放送中に BER 測定が可能な監視装置1705.4 OFDM 波を多段伝送したときの課題と対策1775.5 OFDM 波の海上移動受信179	
5.2.1 ディジタルプリディストーション方式 MCPA1575.2.2 GaN-HEMT を用いた PA1615.2.3 番組伝送用マイクロ波帯高効率電力増幅器1625.3 OFDM 波の監視技術1645.3.1 MER を用いた監視技術1645.3.2 放送中に BER 測定が可能な監視装置1705.4 OFDM 波を多段伝送したときの課題と対策1775.5 OFDM 波の海上移動受信179	
5.2.2 GaN-HEMT を用いた PA 161 5.2.3 番組伝送用マイクロ波帯高効率電力増幅器 162 5.3 OFDM 波の監視技術 164 5.3.1 MER を用いた監視技術 164 5.3.2 放送中に BER 測定が可能な監視装置 170 5.4 OFDM 波を多段伝送したときの課題と対策 177 5.5 OFDM 波の海上移動受信 179	
5.2.2 GaN-HEMT を用いた PA 161 5.2.3 番組伝送用マイクロ波帯高効率電力増幅器 162 5.3 OFDM 波の監視技術 164 5.3.1 MER を用いた監視技術 164 5.3.2 放送中に BER 測定が可能な監視装置 170 5.4 OFDM 波を多段伝送したときの課題と対策 177 5.5 OFDM 波の海上移動受信 179	
5.2.3 番組伝送用マイクロ波帯高効率電力増幅器 162 5.3 OFDM 波の監視技術 164 5.3.1 MER を用いた監視技術 164 5.3.2 放送中に BER 測定が可能な監視装置 170 5.4 OFDM 波を多段伝送したときの課題と対策 177 5.5 OFDM 波の海上移動受信 179	
5.3.1 MER を用いた監視技術 164 5.3.2 放送中に BER 測定が可能な監視装置 170 5.4 OFDM 波を多段伝送したときの課題と対策 177 5.5 OFDM 波の海上移動受信 179	
5.3.2 放送中に BER 測定が可能な監視装置 … 170 5.4 OFDM 波を多段伝送したときの課題と対策 … 177 5.5 OFDM 波の海上移動受信 … 179	
5.3.2 放送中に BER 測定が可能な監視装置 … 170 5.4 OFDM 波を多段伝送したときの課題と対策 … 177 5.5 OFDM 波の海上移動受信 … 179	
5.5 OFDM 波の海上移動受信 179	
5.5.1 海面反射波による影響 180	
5.5.2 ガードインターバル超えのマルチパスの影響 181	
5.5.3 客室内における複数波再送信による干渉 182	
5.5.4 再送信波の受信アンテナへの回り込みによる信号劣化 183	

..... 192

索

1

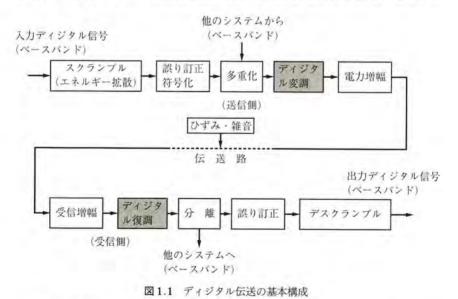
ディジタル伝送の基礎

ディジタル伝送は、アナログ伝送に比べてさまざまな特徴をもっている。 おもなものをまとめて以下に示す。

- ① 信号が2値(0,1)のディジタル符号(bit[†])であるため、雑音や妨害に強い。また、IC (integrated circuit,集積回路)化が容易で低コスト化・小形化・安定化が図れる。
- ② 信号波形を忠実に送る必要はなく、サンプル点で誤りを発生させるほどの干渉がなければ復号が可能である。
- ③ 伝送路で誤りが発生しても、検出・訂正が可能である。また、誤り率で伝送品質・性能を評価できる(アナログ信号、特に映像や音声では人間による主観評価が必要)。
- ④ 映像・音声をはじめ、どのような信号でも、"0"、"1" の符号に変換されるため、さまざまな情報・サービスを多重して一つの伝送路で送ることができる。

一方

- ⑤ 広い帯域を必要とし、情報の圧縮(ビット削減)が不可欠である。
- ⑥ 送受間で通常,同期をとる必要がある。
- ⑦ 信号の劣化状況がある範囲内であれば原信号とまったく同じ品質が得られるが、 誤り訂正が不可能となった時点で急激に受信が不可能となる。
- 8 圧縮や誤り訂正効果を高めるための信号の順序入替え (インタリーブ) などで遅延が発生する。


など、注意すべき点もあるが、情報圧縮技術、変調技術、誤り訂正技術など の進展などにより、これらの課題の多くは解決しつつある。

1.1 ディジタル伝送の基本構成

図1.1 にディジタル伝送の基本構成を示す^{1)*1}。入力ディジタル信号(ベースバンド信号)は,"0","1" が連続して現れないように,すなわち,エネルギーが集中しないようにスクランブル(scramble)^{†2} がかけられた後,伝送途中で生じる誤りを訂正するための誤り訂正符号が付加される。他のシステムからの情報は多重化部で多重され,1本のビットストリーム(bit stream)すなわち,ディジタルデータの時系列情報となる。このデータによりディジタル変調された信号は,高周波(搬送波)に変換され電力増幅されたのち,無線(電波)あるいは有線などの媒体を通して伝送される。受信部では,増幅・復調後ビットストリームを再生し,多重分離部で分離された信号に対して誤り訂正を行い,デスクランブル(descramble)後,もとの信号に戻される。なお,ア

^{†1} 肩付き数字は巻末の引用・参考文献を示す。

^{†2} 伝送帯域内の特定のスペクトル (spectrum) にエネルギーが集中すると,非線形をもつ機器では,ひずみ成分により符号誤りが発生するおそれがある。

ナログ伝送と異なり、ディジタル伝送においては、一般的に送受信間で同期を とる必要があり、受信機側での同期動作が重要となる。ここで同期とは、搬送 波の周波数、位相およびシンボル(符号のある状態、例えば"0"または"1" の状態。通常、複数のビットで構成される)変化のタイミングを送信側と一致 させることをいう。

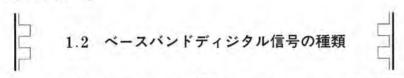
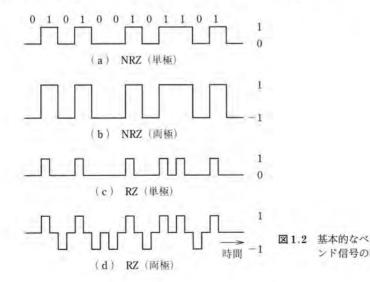



図1.2 に最も基本的なベースバンド信号(base band signal,変調を行う前の信号)の種類を示す 11 。NRZ(non-return to zero)は,最も基本的な信号であるが,映像や音声のような時間的,空間的に相関が大きく"0"または"1"が長く続きやすい信号を伝送する場合には,送受間の同期・タイミングがとりにくくなるため,この符号のままで送ることはあまり行われない。

RZ (return to zero) は、タイミングをとるのは容易となるが、パルス幅が 半分となるため、帯域幅 (bandwidth) は 2 倍必要となる。また、これらの信 号は直流成分を含むが、直流成分を含まない両極 NRZ (-1 あるいは 1 を伝

送), 両極 RZ もある。両極 NRZ は, NRZ 信号をレベル変換 ("0", "1" → "-1", "1") すれば得られる。

図 1.3 に基本となる NRZ 信号の波形とこの波形をフーリエ変換したスペクトルを示す。 T_p はパルス幅, T_i はパルス間隔(パルス周期)である。急激な立上がり,立下がり時間をもつパルス波形のため,スペクトルが無限まで広がっている。また, T_i を大きくしていくとスペクトル間隔は狭くなっていく。

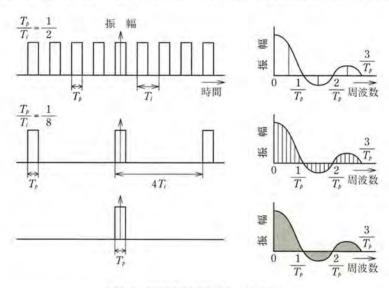
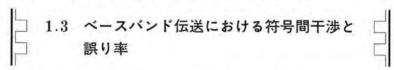



図 1.3 NRZ 信号の波形とスペクトル

注目すべき点は、いずれの波形においても $1/T_p$ ごとに**ヌル点** (null point) ができることである。このことは、 $1/T_p$ の間隔で搬送波を配置した場合は、その周波数間においては符号間干渉 (シンボル間干渉、intersymbol interference, **ISI**) が発生しないということを示している。

ディジタル伝送で重要なのは、受信側で"0"か"1"を正確に判定できることであり、送信波形を忠実に再現する必要はない。すなわち、受信側において

ディジタル信号は、図1.4(a)に示すように、サンプル点で"1"か"-1"を判定できれば、その間はどのような波形であっても差し支えない。ここがアナログ伝送と大きく異なる点である。

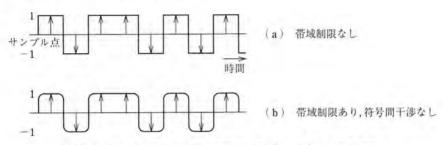


図1.4 ディジタル信号における帯域制限なし、ありのときの波形

NRZ 信号などでは、無限の帯域まで高調波が含まれているため、電波を有効に利用するためには**帯域制限**(band limitation)が必要である。適切な帯域制限を行えば図(b)のような滑らかな波形となり、符号間干渉は生じない。

一方、伝送路の帯域制限が適切でない場合や非直線な位相特性^{†1}をもつ場合は波形ひずみが生じる。この場合、図 1.5 に示すように、符号間干渉によりサンプル点での値が変化し、"0"を"1"と誤って判断してビット誤り率(bit error rate、BER) †2 を上昇させる。

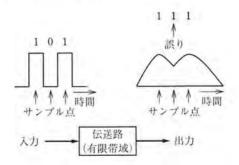


図1.5 帯域制限が適切でない場合の誤り発生

^{†1} 伝送路の位相特性が周波数に対して直線でないこと。

^{†2} シンボル誤りの場合は、シンボルエラーレート (symbol error rate, SER) という。

索 引

[b]		外来雑音電力	141	誤差対策	154
		ガウス雑音	6	誤差補関数	8
アイパターン	19	ガウス分布	6	コスタス法	35
誤り訂正	58	確率密度関数	7	混信保護比	138
[w]		崖効果	143	コンスタレーション	15
		画素	103	[8]	
生き残りパス	62	ガードインターパル	82	161	
異シンボル	80	ガードバンド	69	サイドロープ	19
位相シフトキーイング	13	可変長符号化	105	サイマル放送	145
位相変調	12	加法性ガウス雑音	7	最ゆう復号法	60
色信号	104	簡易 BER 測定	176	雑音指数	45
インタリーブ	93	干渉マージン	141	差動位相検波	37
インパルス	9	[8]		差動位相シフトキーイング	
インパルス応答	9	161			38
[5]		ギガビット/秒	104	差動検波方式	33
171		擬似雑音	96,176	差動符号化	38
ウィンドウ処理	81	基準信号	33	サンプリング周波数	79
動きベクトル	105	輝度信号	103	残留側波帯	47
動き補償	105	逆離散フーリエ変換	75	[L]	
[1]		ギャップフィラー	183	[0]	
17.1		キャリヤ	12	時間インタリーブ	93
衛星ディジタル放送	107	キャリヤ間干渉	131	時間率補正	143
映像搬送波	112	狭帯域フィルタ	34	時間領域	70
エンコーダ	117	局部発振器	72	自然2進数	23
[お]		[\]		実効長	143
				ジッタ	10
オフセット QPSK	51	クリフエフェクト	43,164	時定数	151
親局	124	グレイコード	22	自動周波数補正	90
音声搬送波	112	[=]		時分割多重	69
[<i>か</i>]				シャノンの限界	45
		格子	61	遮へい	147
回線設計	140	高速逆フーリエ変換	100	周波数インタリーブ	93
階層化伝送方式	112	拘束長	60	周波数シフトキーイン	ブ 13
外符号	114	高速フーリエ変換	66	周波数選択性フェージ	ング
外部信号発生器	175	誤差原因	153		84

-						
	周波数逓倍法	34	整合回路	148	直交軸	15
	周波数の許容偏差	135	整合フィルタ	10	直交周波数分割多重	65
	周波数分割多重	69	セグメント	112	直交振幅変調	13
	周波数変換	78	前後比	137	直交復調	72
	周波数変調	12	全受信機雑音電力	142	直交変調	72
	周波数領域	71			1	
	周波数利用効率	14,141	[4]		[7]	
	受信機最小入力終端		相関	80	ディジタル音声放送	66
	X 111 100 100 1 7 (7) 3 (1) 1	142	相互変調積	110	ディジタルテレビ放送	66
	受信機雑音指数	141	相互変調ひずみ	99	逓倍回路	34
	受信機雑音電力	141	装置化マージン	141	定包絡変調方式	64
	受信機所要 CNR	141	組織符号	62	デスクランブル	2
	瞬時周波数	19	3-27517		電気光学効果	149
	乗算器	15	[t=]		伝送速度 17	1,123
	冗長符号	58	帯域圧縮	104	伝送多重制御信号	115
	情報源符号化	117	帯域圧縮技術	103	伝送路符号化	117
	所要 CNR	141	帯域制限	5	伝送モード	112
	所要帯域幅	16	帯域幅	3	伝送容量	45
	tireact come	140.143	ダイポールアンテナ	12	電波法	135
	シングルモードファ		多重化部	117	電力効率	160
	222000	149	多数キャリヤ	163	電力増幅器	98
	信号对雑音比	10	多相 PSK	30	PA I	
	信号点	15	畳込み符号	58	[2]	
	信号点間直線距離	30	畳込み符号化回路	60	同一チャネル	138
	振幅位相シフトキー		多値 ASK	15	等価 CNR	85
	include in a second	13	多値 PAM	15	同期検波方式	33
	振幅シフトキーイン		多値 QAM	26	同軸ケーブル	147
	振幅変調	12	多値 VSB 変復調器	48	同時放送	145
	振幅リップル	87	多値パルス振幅変調	15	同相軸	15
	シンボル	17	多チャネル番組	109	ドップラー効果	
	シンポルエラーレー	- h 5	単一周波数ネットワー	-7	37,68	8,113
	シンボル間干渉	4,84	9	90,106	ドップラーシフト	89
	シンボル長	17	弾性表面波	48	トランスパーサルフィ	ルタ
	シンボルレート	10	7.4.3		74.4	146
	7-4-7		[5]		トレリス	61
	[す]		遅延検波	37	トレリス符号化変調	63
	数值制御発振器	130	遅延プロファイル	152	[な]	
	スクランブル	2	地上ディジタルテレト	放送	1/41	
	スプリアス放射	51		102	ナイキスト間隔	9
	スペクトル	2	チャープ信号	96	ナイキスト帯域	9
	[#]		中央処理装置	170	ナイキストの基準	8
	[T]		中間周波数	78	内符号	114
	正規分布	6	直並列変換	22		

[ぬ]		[.i.]		回り込み	145
ヌルシンボル	96	フィードフォワード	157	[8]	
ヌル点	4	符号化率	59	メインローブ	19
		符号化利得	58	メガビット/秒	11
[ね]		符号間干涉	4	[10]	
熱雑音	6	符号間距離	61	1001	
[は]		符号器	117	有効シンボル	82
		符号語	59	ユークリッド距離	30
ハイトパターン	180	符号分割多重	69	[9]	
ハイパスフィルタ	16	プッシュプル	161	1.71	
白色ガウス雑音	6,45	プリディストータ 15	8,162	リグロース	32
場所率補正	143	プロック符号	58	離散コサイン変換	105
バースト誤り	58	分 散	7	リップル	85
バースト信号	34	分散パイロット	88	利得可変機能	150
バックオフ	111	分布帰還形半導体レー	ザ	リードソロモン符号	58
ハフマン符号	105	1 10 11 11 11 11	149	両側帯波	47
ハミング距離	51	[~]		両側波帯振幅変調	33
ハミング符号	59	2 -		量子化	104
パルス振幅変調	47	ペイロード	119	リング変調回路	17
パンクチャド符号	62	ベースバンド信号	3	隣接チャネル	139
搬送周波数 12		ヘッダ	119	741	
搬送波	12	変換増幅器	147	[11]	
搬送波再生回路	34	変調誤差比	165	連接符号	134
搬送波電力対雑音電力	力比 20	変調指数	54	171	
半値幅	137	変調周波数	16	[3]	
バンドパスフィルタ	32	[(3)		ローパスフィルタ	8
[0]		1191		ロールオフフィルタ	9
101		放送波中継	125	ロールオフ率	9
光強度変調	147	包絡波検波	33	【数字・他】	
光検出器	148	補間	89	【数子•10	
光導波路の屈折率	149	ボルツマン定数	141	π/4シフト QPSK	14
光ファイバ	147	ボーレート	10	2相位相シフト変調	17
ビタビ復号	60	[#]		8 PSK	23
ビット誤り率	5	121		8 VSB	48,108
ピットストリーム	2	マッピング	74	16 PSK	23
ピットレート	11	窓関数	81	16 QAM	27
非同期検波方式	33 マルチキャリヤ 65 32 QAM			27	
		マルチパスフェージン	7 65	64 QAM	27
		マルチパスマージン	141	256 QAM	27

引

[A	1	[E]		MC MCPA	105 157
AAC	105	E_b/N_0	44	MDCT	105
AB級	161	the street of the street of		MER	165
AC 信号	115	[F]		MFN	106
AFC	90	FDM	69	MPEG	104
ALC	163	FEC 方式	58	MPEG-2	104
AM	12	FFT	66	MPEG-4	104
APSK	13,25	FM	12	M-QAM	26
ARQ 方式	58	FSK	13,53	MSK	13,53
ASK	13	tal			
ATSC	107	[G]		(N)	
AVC	104	GaAsFET	162	NCO	130
AWGN	7	GaN-HEMT	161	NF	45
t n	1	Gbps	104	NRZ	3
[B	.1	GI	82	I O	
BCH 符号	59	GMSK	14,56	[0]	
BER	5	(H)		OFDM	14
BPF	32	In1		OFDM 変調技術	103,105
bps	11	HDTV	103	OOK	15
BPSK	16	HDTV 画像	103	OQPSK	51
BS	25,107	HPF	16	[P]	
(C	1	[1]		PA	98
CATV	30	IC	1	PAM	47,71
CDM	69	ICI	131	PD	162
CNR	20	IDFT	75	pixel	103
CPE	131	IF	78	PLL	34
CPU	170	IFFT	66	PM	12
CP 信号	115,136	IMD	99	PN	96,176
CW	136	ISDB-T	107	PSK	13
C級增幅器	14	ISI	4	P-S 変換	71
In	1	ITU	137	To:	
[D	4	I 軸	15	[Q]	
DAB	66	[L]		QAM	13
DCT	105	IL.		QPSK	20
DFB-LD	149	LAN	65	Q軸	15
DPSK	38	LiNbO ₃ 光変調器	147	[R]	r
DSB 波	47	LPF	8		
DU比	86	LSI	66	RF	122
DVB	66	[M]		RIN	148
			100	RS 符号	58
		Mbps	11	RZ	3

	101		SP信号	88,115,137	TTL	162
	[S]		S-P 変換	22,70	1	[U]
SAW		48	SSB	47		101
SDTV		103	STL	162	UHF	78,102
SER		5		(T)	11.2	[V]
sinc 関数		9		111		1.4.1
SFN		90,106	TDM	69	VCO	34,53,129
SG		175	TFM	56	VHF	102
SMF		149	TMCC 信号	115	VLC	105
SNR		10	TS信号	111	VSB	14,47

---著者略歷---

1970年 徳島大学工学部電気工学科卒業

1970年 日本放送協会 (NHK) 勤務

1988年 工学博士(東京大学)

2004年 広島市立大学教授

2013年 広島市立大学名誉教授

技術局において送信装置の設計・開発および地上ディジタル放送ネットワーク 関連の研究に従事。東京都発明研究功労賞、映像情報メディア学会 開発賞・ 進歩賞などを受賞。電子情報通信学会フェロー。

ディジタル通信・放送の変復調技術

Digital Modulation Techniques for Communications and Broadcasting
© Kazuhisa Haeiwa 2008

2008 年 4 月 10 日 初版第 1 刷発行 2014 年 6 月 10 日 初版第 3 刷発行

_

検印省略

著 者 壁 岩 箽 覧 発行者 株式会社 コロナ社

代表者 牛来真也

印刷所 萩原印刷株式会社

112-0011 東京都文京区千石 4-46-10

発行所 株式会社 コ ロ ナ 社

CORONA PUBLISHING CO., LTD.

Tokyo Japan

振替 00140-8-14844 · 電話(03)3941-3131(代)

ホームページ http://www.coronasha.co.jp

ISBN 978-4-339-00796-1

(中原) (製本:愛千製本所)

Printed in Japan

本書のコピー、スキャン、デジタル化等の 無断複製・転載は著作権法上での例外を除 き禁じられております。購入者以外の第三 者による本書の電子データ化及び電子書籍 化は、いかなる場合も認めておりません。

落丁・乱丁本はお取替えいたします