『図でよくわかる電磁気学』正誤表

このたびは本書をお買い上げいただき、誠にありがとうございます。本書には下記のような誤りがありました。ここに訂正し、謹んでお詫び申し上げます。

ページ	箇所	誤	ΙĒ
21	最下行	\cdots 本数は最大となり $m{E}\cdot\delta$ $m{S}$ である。 \cdots	… ・・・・本数は最大となりE δ S である。・・・ (E とS は太字ではない)
26	式(3.21) $(r \le a)$ の式	\cdots = k / $(12 \varepsilon_0) (r^3 + 2a^3)$	\cdots = k / (12 $arepsilon$ $_0$) (4 a 3 $ r$ 3)
41	側注 †2 下から2行目	$\rho_{\rm s} = \boldsymbol{P} \cdot \boldsymbol{a}_{\rm n} = \boldsymbol{P}_{\rm n}$	$ \rho_s = \mathbf{P} \cdot \mathbf{a}_n = P_n $ (右辺の P_n の P は太字ではない)
43	式(4.35)	$\int_{\mathbf{v}} \operatorname{div} \mathbf{D} \cdot \mathrm{d}v = \cdots$	$\int_{\mathbf{v}} \operatorname{div} \boldsymbol{D} \mathrm{d}v = \cdots$ $(\operatorname{div} \boldsymbol{D} \boldsymbol{e} \mathrm{d}v \boldsymbol{o} \boldsymbol{e} \mathrm{d}v \boldsymbol{e})$
50	式(5.28)	$\cdots = Q/(4\pi)$ ($1/(\epsilon_1 r) + \cdots$	\cdots = $Q/(4\pi)$ ($1/(\epsilon_1 r) - 1/(\epsilon_1 b) + \cdots$
50	式(5.29)	$\cdots = Q/(4\pi)$ ($1/(\epsilon_1 a) + \cdots$	\cdots = $Q/(4\pi)$ ($1/(\epsilon_1 a) - 1/(\epsilon_1 b) + \cdots$
64	式(6.52)	(省略)	中辺と左辺の $oldsymbol{i}$, $oldsymbol{j}$, $oldsymbol{k}$ を $oldsymbol{e}_x$, $oldsymbol{e}_y$, $oldsymbol{e}_z$ に置き換える(それぞれ $oldsymbol{2}$ か所)。
69	例題7.1の 【解答例】 4~5行目	…の個数は vS/N [m^3]= vS/N [個], よって…は q [C] $\times vS/N$ [個]= qvS/N [C] である。…が得られ, $v=IN/(qS)$ [m/s] が…	…の個数は $vS \times N$ [m^3]= vSN [個], よって…は q [C] $\times vSN$ [個]= $qvSN$ [C] である。…が得られ、 v = $I/(NqS)$ [m/s]が…
73	7.7節の 2~3行目	…を受けて v δ t だけ動くのだから,その仕事 W は q E $\cdot v$ δ t τ …	\cdots を受けて v Δt だけ動くのだから,その仕事 W は q $E\cdot v$ Δt で \cdots
73	式(7.22) の単位	$(J / sm^3 = \cdots)$	$\left(J/\left(sm^{3}\right)=\cdots\right)$
81	演習問題 【1】の2行目	の導体で覆う。…	の導体で断面半径 b [m]まで覆う。…
88	式(8.34)	(省略)	分子の「 I 」(アイ)は、数字の「 1 」(イチ)が正しい。
93	式(8.62)	$\cdots = N_2 M_0 nSI_1 / I_1 = \cdots$	\cdots = $N_2 \mu nSI_1 / I_1 = \cdots$
96	8.4.2項 4行目	…式(8.51), (8.53), (8.54)から	…式(8.52), (8.54), (8.55)から
96	式(8.77)	$\cdots = N_2 / I_2 \int_{S_2} \boldsymbol{B}_1 d\boldsymbol{S}_2$	\cdots = N_2/I_2 $\int_{S^2} \boldsymbol{B}_1 \cdot \mathrm{d} \boldsymbol{S}_2$ $(\boldsymbol{B}_1 \mathrm{ed} \boldsymbol{S}_2 \mathrm{offlc} [\cdot]$ を入れる)
96	式(8.79)	$\cdots = N_2 / I_2 \int_{S_2} (\nabla \times \boldsymbol{A}_1) dS_2$	$\cdots = N_2 / I_2 \int_{S_2} (\nabla \times A_1) \cdot dS_2$ (($\nabla \times A_1$) と dS_2 の間に「・」を入れる)
96	式(8.80)の 1行上	一方, 式 (8.35) から	一方, 式 (8.36) から
96	式(8.81)	\cdots d I_2 d I_1 (H)	\cdots d I_2 ・d I_1 [H] (d I_2 とd I_1 の間に「・」を入れる)
100	式(4.19') の2行上	…は、電気双極子の作る…	…は, 電気双極子 p の作る…
100	式(4.19')	$\cdots = 1/(4 \pi \epsilon_0 R_2) \boldsymbol{P} \cdot \boldsymbol{a}_R \qquad (4.19')$	\cdots = $1/(4\pi\epsilon_0R_2)$ $\boldsymbol{p}\cdot\boldsymbol{a}_R$ (4.9') (\boldsymbol{P} は小文字の \boldsymbol{p} , 式番号は(4.9')が正しい)
100	表9.1 静電界の列 3行目	P 分極〔C·m〕	p 電気双極子 [C・m]
101	1行目	$\cdots \boldsymbol{P} \boldsymbol{\varepsilon} \boldsymbol{m}$, $\epsilon_0 \boldsymbol{\varepsilon} 1 / \mu_0$, \cdots	\cdots $m{p}$ & $m{m}$, $arepsilon_0$ & $1/\mu_0$, \cdots
104	式(9.33)	$\int_{\mathbb{C}} \mathbf{H} \cdot dl = \cdots$	$\oint_{\mathcal{C}} \boldsymbol{H} \cdot dl = \cdots$

ページ	箇所	誤	正
105	式(9.40)	$\boldsymbol{B}_{1n} = \boldsymbol{B}_{2n}$	$B_{1n} = B_{2n}$ (B_{1n} , B_{2n} はスカラーなので細字表記)
105	式(9.42)	$\mu_1 \boldsymbol{H}_{1n} = \mu_2 \boldsymbol{H}_{2n}$	$\mu_1 H_{1n} = \mu_2 H_{2n}$ (H_{1n} , H_{2n} はスカラーなので細字表記)
109	図9.14の 図中の文字	$\mathrm{d} l$	81
142	式(11.34) 最右辺	\cdots = $P'D / PD r_1 / r_2$	$\cdots = P'D / PD = r_1 / r_2$
142	式(11.34) の1行下	…C点は r_1 : r_2 = PD': PD の比を…	…C点は $r_1:r_2$ = P'D: PD の比を…
143	4行目の式	$Q / r^2 - \cdots$	Q / r_2 – \cdots
144	式(11.43) の1行下	を得る。式(11.36), (11.42) から	を得る。式(11.37), (11.43) から
147	式(12.7)	$\varphi_1 = (L_1 + L_2 + L_3 + \cdots)I + \cdots$	$\varphi_1 = L_1 I + \cdots$
147	式(12.7) の1行下	であるから, L_i , M_{i1} が…	であるから, L_1 , M_{i1} が \cdots
147	式(12.8)	$\cdots = (L_1 + L_2 + L_3 + \cdots) dI/dt + \cdots$	$\cdots = -L_1 dI/dt - \cdots$
148	式(12.10)	$\varepsilon = \delta \phi / dt = \cdots$	$\varepsilon = -\mathrm{d} \phi / \mathrm{d} t = \cdots$
149	例題12.1の 【解答例】 1行目の前に挿入		磁束の方向より,起電力の向きは電流を反時 計回りに流したときに生じる方向を正と定義す る。
	例題12.1の 【解答例】 下から4行目	となる。	となる。ただし, $ heta= an^{-1}(\omega x/v)$ 。
150 (151)	式(12.24) (式(12.24)再掲)	$F_{\climate{\xi}}$ = ···	F _ξ = ··· (F は太字)
153	例題12.2の 3行目	…に作用する力 ƒ を求めなさい。	…に作用する力の大きさƒを求めなさい。
	例題12.2の 【解答例】 2行目,6行目	\boldsymbol{B}_1	B ₁ (Bの太字をやめる。スカラーとする)
	例題12.2の 【解答例】 式(12.39)	$\boldsymbol{B}_{1} = \mu \boldsymbol{I}_{1} / \left(2 \pi d \right)$	$B_1 = \mu I_1 / (2\pi d)$ (B と I の太字をやめる。スカラーとする)
	例題12.2の 【解答例】 式(12.40)	$\boldsymbol{f} = \mu \boldsymbol{I}_1 \boldsymbol{I}_2 / (2 \pi d)$	$f = \mu I_1 I_2 / (2\pi d)$ ($f \ge I$ の太字をやめる。スカラーとする)
	例題12.2の 【解答例】 下から3行目	…単位当たりの力 f は…	…単位当たりの力の大きさf は…
	例題12.2の 図12.10中の文字	F	F (太字をやめる。スカラーとする。2か所)
154	図12.15	(省略)	$x \leftarrow \odot z$ $\downarrow \qquad (図中に左図を挿入し, x, y, z の y \qquad の方向を示す)$
155	演習問題 【2】の1行目	…磁束密度が毎秒2 Wb/m ² の…	…磁束密度が毎秒2 T の…

ページ	箇所	誤	正
155	演習問題 【3】の2行目	$\cdots = 3 \sin \pi x \cdot \sin \pi y [Wb/m^2] \cdots$	$\cdots = 3 \sin \pi x \cdot \sin \pi y (T) \cdots$
155	演習問題 【4】の3行目	…=0.15×10 ⁻⁴ Wb/m ⁻² とする。	…=0.15×10⁻⁴ T とする。
161	式(13.40) の単位	[ms]	[m/s]
185	式(14.48) の3行目	$= \boldsymbol{a}_{y} j 2 \cdots$	$=-a_{y}j_{2}\cdots$
189	式(14.67) の第3式	···= - η ₂	···= η ₂
193	式(14.101) の1行上	\cdots 反射率 $arGamma_{f L}$,透過率 $ au_{f t}$ は \cdots	…反射率 $ au_{ m r}$,透過率 $ au_{ m t}$ は…
193	式(14.101)	Γ _⊥ = ···	τ _r =
193	式(14.102)	$ au_{\perp}$ = \cdots	$ au_{ m t}$ = \cdots
204	4章の解答 【1】の式	$P = 6.1 \times \dots = 2.04 \text{ (C / m}^2)$	$P = 6.1 \times \dots = 0.204 \text{ (C / m}^2\text{)}$
207	下から5行目 の式	$f_2 = -\delta w_e / (\delta l) - Q^2 / (\varepsilon_0 \varepsilon_r S^2) \delta l / (\delta l)$ $= -Q^2 / (\varepsilon_0 \varepsilon_r S^2)$	$f_2 = -\delta w_e / (\delta l) = -Q^2 / (2\varepsilon_0 \varepsilon_r S^2) \delta l / (\delta l)$ $= -Q^2 / (2\varepsilon_0 \varepsilon_r S^2)$
208	6章の解答 【5】(a) 最後の式の単位	(N/m2)	(N/m^2)
209	下から2行目 の式	$i_{\rm n}(\varepsilon_1/\sigma_1 - \varepsilon_2/\sigma_2)$ [C/m ²]	$i_{\rm n}(\varepsilon_2/\sigma_2 - \varepsilon_1/\sigma_1)$ [C/m ²]
210	上から4行目 の式	$V = V_{A} + V_{B} = \cdots$ $\therefore V_{A} = \cdots, V_{B} = Q / (4 \pi \varepsilon b)$	$V = V_{A} - V_{B} = \cdots$ $\therefore V_{A} = \cdots, V_{B} = -Q / (4 \pi \varepsilon b)$
211	8章の解答 【4】	(省略)	式中の「µ」をすべて「µ0」に変更 (6か所)
212	9章の解答 【2】の9行目	$\boldsymbol{H}_2 = \cdots = \boldsymbol{H}_{1n} \Big(\cdots$	$H_2 = \cdots = H_{1t} (\cdots$
215	11章の解答 【5】の3行目	たので、 $\sigma = \sigma_0 E$ となる。	なので、 $\sigma = \varepsilon_0 E$ となる。
215	11章の解答 【5】の6行目	(省略)	第1式,第2式とも,ルートの中の第3項「+2…」 を「-2…」とする。
215	11章の解答 【5】の8行目	(省略)	右辺の大カッコの中の第1項の分母および第2 項の分母のルートの中の第3項「+2…」を「-2 …」とする。
215	11章の解答 【5】の10行目	(省略)	右辺の大カッコの中の第1項の分母および第2 項の分母の3/2乗のカッコの中の第3項「+2…」 を「-2…」とする。
215	11章の解答 【5】の11行目	(省略)	右辺の分母のルートの中の第3項「 $+2ad\cos\theta$ 」を「 $-2ad\cos\theta$ 」とする。
216	解図12.2	(省略)	影 (アミ点)の平行四辺形は,φを左端とする 平行四辺形の位置が正しい。
216	12章の解答 【3】の4行目	$\cdots = 24 / \pi f \cos 2 \pi f t$	$\cdots = -24 / \pi f \cos 2 \pi f t$
216	12章の解答 【3】の6行目	$e(50) = 120/\pi \cos 314t$ [V] $e(100) = 240/\pi \cos 628t$ [V]	$e(50) = -1200/\pi \cos 314t$ [V] $e(100) = -2400/\pi \cos 628t$ [V]
218	上から2行目 の式	$\cdots 2E_{1}/a E_{2}/b \cos \phi (E_{2}/a)^{2} = \cdots$	$\cdots 2E_1/a E_2/b \cos \phi + (E_2/b)^2 = \cdots$